Amir Reza Mogharrebi, Ali Reza D. Ganji, Khashayar Hosseinzadeh, So Roghani, Armin Asadi and Amin Fazlollahtabar
The purpose of the study is to indicate a three-dimensional convective heat transfer properties evaluation of magnetohydrodynamics nanofluid flow, comprising motile oxytactic…
Abstract
Purpose
The purpose of the study is to indicate a three-dimensional convective heat transfer properties evaluation of magnetohydrodynamics nanofluid flow, comprising motile oxytactic microorganisms and nanoparticles, passing through a rotating cone.
Design/methodology/approach
The imposed technique for solving the governing equations is the Runge–Kutta fifth-order method. The main point of this survey is to diagnosis the influence of diverse factors on velocity, temperature distributions and concentration profile. Furthermore, appending the magnetic field, thermal radiation and viscous dissipation in calculations; also, simultaneous involvement of heat absorption and excretion has been represented as novelties.
Findings
The results elucidate that by changing the Peclet number from 1 to 2, the dimensionless concentration of the microorganisms has been diminished by about 34.37%. In addition, variation of the magnetic parameter from 0 to 1 has been resulted in reducing the temperature distribution by about 3.11%.
Originality/value
Recently, attention has been absorbed to adding the motile microorganisms to nanofluid for enhancement of heat transfer and avoiding aggregation of particles. In this regard, the hydrothermal flow of microorganisms has been investigated in this study.
Details
Keywords
S.S. Ghadikolaei, Kh. Hosseinzadeh and D.D. Ganji
The purpose of this study is, mixed convection on magnetohydrodynamic (MHD) flow of Eyring–Powell nanofluid over a stretching cylindrical surface in the presence of thermal…
Abstract
Purpose
The purpose of this study is, mixed convection on magnetohydrodynamic (MHD) flow of Eyring–Powell nanofluid over a stretching cylindrical surface in the presence of thermal radiation, chemical reaction, heat generation and Joule heating effect is investigated and analyzed. The Brownian motion and thermophoresis phenomenon are used to model nanoparticles (Buongiorno’s model).
Design/methodology/approach
The numerical method is applied to solve the governing equations. Obtained results from the effects of different parameters changes on velocity, temperature and concentration profiles are reported as diagrams.
Findings
As a result, velocity profile has been reduced by increasing the Hartman number (magnetic field parameter) because of the existence of Lorentz force and increasing Eyring–Powell fluid parameter. In addition, the nanoparticle concentration profile has been reduced because of increase in chemical reaction parameter. At the end, the effects of different parameters on skin friction coefficient and local Nusselt number are investigated.
Originality/value
Eyring–Powell nanofluid and MHD have significant influence on flow profile.
Details
Keywords
Kh. Hosseinzadeh, Elham Montazer, Mohammad Behshad Shafii and D.D. Ganji
The purpose of this paper is to investigate natural convection in a porous wavy-walled enclosure that is including a cylinder cavity in the middle of it and filled with a hybrid…
Abstract
Purpose
The purpose of this paper is to investigate natural convection in a porous wavy-walled enclosure that is including a cylinder cavity in the middle of it and filled with a hybrid nanofluid contains 1-Butanol as the base fluid and MoS2–Fe3O4 hybrid nanoparticles.
Design/methodology/approach
The domain of interest is bounded by constant temperature horizontal corrugated surfaces and isothermal vertical flat surfaces. The numerical outputs are explained in the type of isotherms, streamline and average Nusselt number with variations of the Rayleigh number, Hartmann number, nanoparticle shape factor and porosity of the porous medium. For solving the governing equations, the finite element method has been used.
Findings
The results show that Nuave is proportional to Rayleigh and nanoparticle shape factor directly as well as it has an inverse relation with Hartmann and porosity. The obtained results reveal that the shape factor parameter has a significant effect on the heat transfer performance, which shows a 55.44% contribution on the average Nusselt number.
Originality/value
As a novelty, to maximize the heat transfer performance in a corrugated walls enclosure, the optimal parameters have intended by using the response surface and Taguchi methods. Additionally, an accurate correlation for the average Nusselt number is developed with sensibly great precision.
Details
Keywords
Kh. Hosseinzadeh, So Roghani, A. Asadi, Amirreza Mogharrebi and D.D. Ganji
The purpose of this paper is to investigate micropolar magnetohydrodynamics (MHD) fluid flow passing over a vertical plate. Three different base fluids have been used that include…
Abstract
Purpose
The purpose of this paper is to investigate micropolar magnetohydrodynamics (MHD) fluid flow passing over a vertical plate. Three different base fluids have been used that include water, ethylene glycol and ethylene glycol/water (50%–50%). Also, a nanoparticle was used in all of the base fluids. The effects of natural convection heat transfer and magnetic field have been taken into account.
Design/methodology/approach
The main purpose of solving the governing equations is to scrutinize the effects of the magnetic parameter, the nanoparticle volume fraction, micropolar parameter and nanoparticles shape factor on velocity, temperature and microrotation profiles, the skin friction coefficient and the Nusselt number. These surveys have been considered for three base fluids simultaneously.
Findings
The results indicate that for water-based fluids, the temperature profile of lamina-shaped nanoparticles is 38.09% higher than brick-shaped nanoparticles.
Originality/value
This paper provides micropolar MHD fluid flow analysis considering natural convection heat transfer and magnetic field in three different base fluids. The aim of assessments is the diagnosis of some parameter effects, such as magnetic parameter and nanoparticle volume fraction, on velocity, temperature and microrotation profiles and components. Also, the use of mixed base fluids presented as a novelty in this paper.