Khader Zelani Shaik, P. Siddaiah and K. Satya Prasad
Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate, and they introduce a zero-degree reflection…
Abstract
Purpose
Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate, and they introduce a zero-degree reflection phase shift to incident waves. The antenna designers have new challenges while designing the AMC structure. The steps followed in designing the structure are as follows: 1) Designing the antenna, aimed to operate at millimetric wave frequencies, (2) Designing the AMC at desired frequencies, (3) Integrating the antenna design and AMC to resonate at millimetric wave frequencies and (4) Validate the output parameters of the antenna to be suitable for Internet of Things (IoT) applications.
Design/methodology/approach
The antenna is integrated with artificial material known as high impedance surface (HIS) for performance enhancement. A miniaturized, multiband, enhanced gain, AMC-integrated CPW-fed antenna is proposed and aimed to operate at millimetric wave frequencies, which is most suitable for IoT applications. The developed antenna operates at an extremely high range (30–300 GHz), i.e. from 40 to 60 GHz with the return loss values at lesser than −20 dB, and gain is greater than 10. The antenna is developed and simulated by using HFSS software.
Findings
An extensive research study has been carried out to develop a low profile, high gain and optimized antenna. The first two steps are separately designing the antenna and the AMC unit cell at the desired frequencies. The third step is finding the antenna or AMC radiating parts responsible for each resonant frequency by analysing the surface current distribution. CPW fed along with AMC integration has made the antenna feasible to achieve the extremely high frequency (EHF) range, i.e. 40–60 GHz, which is highly adoptable in IoT applications.
Originality/value
The result represented that the developed antenna is resonating at EHF rank with high gain and good imped matching when it is being compared with the previous models and has only CPW fed without having AMC structure integration. It is evident that the antenna which has only CPW fed has resonated at lower frequency than EHF range and justified output characteristics. But when it is embedded with the AMC structure, it resonates at the EHF range, which makes the antenna highly suitable for IoT applications, with more accuracy and high data rate possibility.
Khader Zelani Shaik, Siddaiah P. and K. Satya Prasad
Millimeter wave spectrum represents new opportunities to add capacity and faster speeds for next-generation services as fifth generation (5G) applications. In its Spectrum…
Abstract
Purpose
Millimeter wave spectrum represents new opportunities to add capacity and faster speeds for next-generation services as fifth generation (5G) applications. In its Spectrum Frontiers proceeding, the Federal Communications Commision decided to focus on spectrum bands where the most spectrums are potentially available. A low profile antenna array with new decoupling structure is proposed and expected to resonate at higher frequency bands, i.e. millimeter wave frequencies, which are suitable for 5G applications.
Design/methodology/approach
The presented antenna contains artificial magnetic conductor (AMC) surface as decoupling structure. The proposed antenna array with novel AMC surface is operating at 29.1GHz and proven to be decoupling structure and capable of enhancing the isolation by reducing mutual coupling as 8.7dB between the array elements. It is evident that, and overall gain is improved as 10.1% by incorporating 1x2 Array with AMC Method. Mutual coupling between the elements of 1 × 2 antenna array is decreased by 39.12%.
Findings
The proposed structure is designed and simulated using HFSS software and the results are obtained in terms of return loss, gain, voltage standing wave ratio (VSWR) and mutual coupling. The S-Parameters of each stage of design is tabulated and compared with each other to prove the decoupling capability of AMC surface in antenna arrays.
Originality/value
The proposed structure is designed and simulated using HFSS software, and the results are obtained in terms of return loss, gain, VSWR and mutual coupling. The S-Parameters of each stage of design is tabulated and compared with each other to prove the decoupling capability of AMC surface in antenna arrays.