Search results
1 – 10 of 21A.G. Mohan Das Gandhi, K. Soorya Prakash and V. Kavimani
This paper aims to examine the investigations made on the corrosion behaviour of magnesium (Mg) substrate electrodeposited using different nano-materials.
Abstract
Purpose
This paper aims to examine the investigations made on the corrosion behaviour of magnesium (Mg) substrate electrodeposited using different nano-materials.
Design/methodology/approach
This study uses nano-materials such as those of reduced graphene oxide (r-GO), titanium-di-oxide (TiO2) and also r-GO/TiO2 nano-composites (dispersed through ultra-sonication process) at 3-min time interval. Crystalline nature of synthesized TiO2 is studied through X-ray diffraction and its pore volume is measured to be approximately 0.1851ccg-1 by Brunauer Emmett Teller analysis.
Findings
Surface morphology of the developed set of specimens inspected through scanning electron microscopy and energy dispersive spectroscopy establishes a clean surface coating and further witnesses for only minimal defects. Electrochemical behaviour of the developed coating is studied exhaustively using Tafel polarization and electrochemical impedance spectroscopy in 0.1 M Na2SO4 solution.
Originality/value
Incremental corrosion resistance exhibited by developed composite coating owes to the factors viz. chemical stability and hydrophobic tendency of TiO2 and r-GO; these known engineering facts resist the flow of ions into the corrosive media and thereby reduce the rate of corrosion.
Details
Keywords
Kavimani V., Kumaran S., Vignesh Ponnusamy and Navneet Kumar
This study aims to analyze the effect of interrupted rolling on microstructures and mechanical properties of Mg–8Li–xGr composite is investigated.
Abstract
Purpose
This study aims to analyze the effect of interrupted rolling on microstructures and mechanical properties of Mg–8Li–xGr composite is investigated.
Design/methodology/approach
Graphene reinforced composite was developed by using stir casting route and rolled with different reduction in thickness such as 50, 75 and 90%. Microstructure, hardness and tensile characteristics of the rolled samples were evaluated.
Findings
Investigation on microstructures of rolled composite depicts that increase in rolling reduction % resulted in fine elongated grains and decreased aspect ratio. Further, it was also observed that increasing percentage of rolling reduction promotes the dissolution of ß Li phase and as a result the ductility of composite decreases. Interrupted rolled samples showcase higher hardness when compared with as-cast composite. Composite rolled with 90% reduction displays higher yield strength of 219 MPa. Hardening capacity of composites decreases with increase in reduction percentage due to the effective reduction in grain size.
Originality/value
Investigation on the influence of interrupted rolling on microstructures and mechanical properties of Mg graphene composite. The in-depth understanding of this will help to improve its wide spread application.
Details
Keywords
Kavimani V., Gopal P.M., Arulmurugan R. and Saravana Mani Kailasam
The purpose of this study is to develop a green corrosion inhibitor (GCI) from the parthenium hysterophorus (PHS) leaf and identifying its efficiency in corrosion inhibition of…
Abstract
Purpose
The purpose of this study is to develop a green corrosion inhibitor (GCI) from the parthenium hysterophorus (PHS) leaf and identifying its efficiency in corrosion inhibition of AZ31 alloy.
Design/methodology/approach
GCI from PHS leaf is extracted with the aid of Soxhlet apparatus and analysed through Fourier transform infrared spectroscopy (FTIR) and phytochemical tests to identify the functional groups and chemical compounds present. Inhibition efficiency (IE) of PHS extract is identified through polarization analysis and immersion tests in which concentration of PHS extract (0–300 ppm) and temperature (303–353 K) is varied.
Findings
Maximum IE of 84% is exhibited by the prepared PHS extract at a concentration of 250 ppm at 303 K and further addition diminishes IE. The developed GCI is found effective in room temperature (303 K) as it exhibits lower IE when temperature increased. Both physical and chemical absorption mechanisms were identified for PHS extract over AZ31 surface, whereas FTIR and SEM analysis confirms the development of passivation layer.
Originality/value
Development of GCI from the leaf of a weed (PHS) that disturbs the ecosystem and identifying its efficiency in preventing corrosion of AZ31 under saline environment.
Details
Keywords
Hamsavathi Kannan, Soorya Prakash K. and Kavimani V.
The aim of the work is to investigate structural behaviour of reinforced concrete (RF) beam retrofitted with basalt fibre (BF) fabric. The incorporation of BF showed enhancement…
Abstract
Purpose
The aim of the work is to investigate structural behaviour of reinforced concrete (RF) beam retrofitted with basalt fibre (BF) fabric. The incorporation of BF showed enhancement in bending strength, to increase confinement and to repair damages caused by cracking. In the early decades, using BF for composite materials shaped BF as an excellent physical substance with necessary mechanical properties, highlighting the significant procedures ability.
Design/methodology/approach
Specimens were casted with U-wrapped BF and then evaluated based on flexural tests. In the test carried over for flexural fortifying assessment, BF reinforcements demonstrated a definitive quality improvement in the case of the subjected control sample; ultimately, the end impacts depend upon the applied test parameters. From the outcomes introduced in this comparison, for the double-wrapped sample, the modifications improved by 12% than that of the single-wrapped beam, which is identified to subsist for a better strengthening of new-age retrofitting designs.
Findings
The current research deals with the retrofitting of RC beam by conducting a comparative experiment on wrapping of BF (single or double BF wrapping) in improving the mechanical behavior of concrete.
Originality/value
It can be shown from the experimental results that increasing the number of layers has significant effect on basalt strengthened beams.
Details
Keywords
Rajat Yadav, Anas Islam and Vijay Kumar Dwivedi
The purpose of this paper is to study Al-based green composite. To make composite samples of aluminium alloy (AA3105) with different weight percentages of rice husk ash (RHA) and…
Abstract
Purpose
The purpose of this paper is to study Al-based green composite. To make composite samples of aluminium alloy (AA3105) with different weight percentages of rice husk ash (RHA) and eggshell (ES) particles as reinforcement, stir casting method was used.
Design/methodology/approach
Several other aspects, including the weight percent of reinforcing agent particles, the applied stress and the sliding speed, were taken into consideration. During the course of the wear test, the sliding distance that was recorded varied from a minimum of 1,000 m all the way up to a maximum of 3,135 m (10, 15, 20, 25 and 30 min). The typical range for normal loads is 8–24 N, and their speed is 1.58 m/s.
Findings
With the AA/ES/RHA composite, the wear rates decreases when the grain size of the reinforcing particles enhanced. Scanning electron microscopy images of worn surfaces show that at low speeds, delaminating and ploughing are the main causes of wear. At high speeds, ploughing is major cause of wear. Composites with better wear-resistant properties can be used in wide range of tribological applications, especially in the automotive industry. It was found that hardness increases at the same time as the weight of the reinforcement increases. Tensile and hardness were maximized at 10% reinforcement mix in Al3105.
Originality/value
In this work, ES and RHA has been used to develop green metal matrix composite to support green revolution as promoted/suggested by United Nations thus reducing the environmental pollution.
Details
Keywords
Madhavarao Singuru, Kesava Rao V.V.S. and Rama Bhadri Raju Chekuri
This study aims to investigate the optimal process parameters of the wire-cut electrical discharge machining (WCEDM) for the machining of the GZR-AA7475 hybrid metal matrix…
Abstract
Purpose
This study aims to investigate the optimal process parameters of the wire-cut electrical discharge machining (WCEDM) for the machining of the GZR-AA7475 hybrid metal matrix composite (HMMC). HMMCs are prepared with 2 Wt.% graphite and 4 Wt.% zirconium dioxide reinforced with aluminium alloy 7475 (GZR-AA7475) composite by using the stir casting method. The objective is to enhance the mechanical properties of the material while preserving its unique features. WCEDM with a 0.18 mm molybdenum wire electrode is used for machining the composite.
Design/methodology/approach
To conduct experimental studies, a Taguchi L27 orthogonal array was adopted. Input variables such as peak current (Ip), pulse-on-time (TON) and flushing pressure (PF) were used. The effect of process parameters on the output responses, such as material removal rate (MRR), surface roughness rate (SRR) and wire wear ratio (WWR), were investigated. The grey relational analysis (GRA) is used to obtain the optimal combination of the process parameters. Analysis of variance (ANOVA) was also used to identify the significant process parameters affecting the output responses.
Findings
Results from the current study concluded that the optimal condition for grey relational grade is obtained at TON = 105 µs, Ip = 100 A and PF = 90 kg/cm2. Peak current is the most prominent parameter influencing the MRR, whereas SRR and WRR are highly influenced by flushing pressure.
Originality/value
Identifying the optimal process parameters in WCEDM for machining of GZR-AA7475 HMMC. ANOVA and GRA are used to obtain the optimal combination of the process parameters.
Details
Keywords
Anshuman Kumar, Chandramani Upadhyay, Ram Subbiah and Dusanapudi Siva Nagaraju
This paper aims to investigate the influence of “BroncoCut-X” (copper core-ZnCu50 coating) electrode on the machining of Ti-3Al-2.5V in view of its extensive use in aerospace and…
Abstract
Purpose
This paper aims to investigate the influence of “BroncoCut-X” (copper core-ZnCu50 coating) electrode on the machining of Ti-3Al-2.5V in view of its extensive use in aerospace and medical applications. The machining parameters are selected as Spark-off Time (SToff), Spark-on Time (STon), Wire-speed (Sw), Wire-Tension (WT) and Servo-Voltage (Sv) to explore the machining outcomes. The response characteristics are measured in terms of material removal rate (MRR), average kerf width (KW) and average-surface roughness (SA).
Design/methodology/approach
Taguchi’s approach is used to design the experiment. The “AC Progress V2 high precision CNC-WEDM” is used to conduct the experiments with ϕ 0.25 mm diameter wire electrode. The machining performance characteristics are examined using main effect plots and analysis of variance. The grey-relation analysis and fuzzy interference system techniques have been developed to combine (called grey-fuzzy reasoning grade) the experimental response while Rao-Algorithm is used to calculate the optimal performance.
Findings
The hybrid optimization result is obtained as SToff = 50µs, STon = 105µs, Sw = 7 m/min, WT = 12N and Sv=20V. Additionally, the result is compared with the firefly algorithm and improved gray-wolf optimizer to check the efficacy of the intended approach. The confirmatory test has been further conducted to verify optimization results and recorded 8.14% overall machinability enhancement. Moreover, the scanning electron microscopy analysis further demonstrated effectiveness in the WEDMed surface with a maximum 4.32 µm recast layer.
Originality/value
The adopted methodology helped to attain the highest machinability level. To the best of the authors’ knowledge, this work is the first investigation within the considered parametric range and adopted optimization technique for Ti-3Al-2.5V using the wire-electro discharge machining.
Details
Keywords
Zahra Shams Ghahfarokhi, Mojtaba Bagherzadeh, Ebrahim Ghiamati Yazdi and Abbas Teimouri
The purpose of this paper is study of the type of functional group and its situation on phenyl molecule, in increasing the corrosion protection of modified graphene layers by it…
Abstract
Purpose
The purpose of this paper is study of the type of functional group and its situation on phenyl molecule, in increasing the corrosion protection of modified graphene layers by it. Corrosion protection efficiency of graphene was raised via modifying the surface of graphene-coated carbon steel (CS/G) by using aromatic molecules. Phenyl groups with three different substitutions including COOH, NO2 and CH3 grafted to graphene via diazonium salt formation route, by using carboxy phenyl, nitro phenyl and methyl phenyl diazonium salts in ortho, meta and para spatial situations.
Design/methodology/approach
Molecular bindings were characterized by using X-ray diffractometer, fourier-transform infrared spectroscopy (FTIR), Raman and scanning electron microscopy (SEM)/ energy dispersive X-ray analysis (EDXA) methods. Anti-corrosion performance of modified CS/G electrodes was evaluated by weight loss and electrochemical techniques, potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy, in 3.5 per cent NaCl solution.
Findings
The obtained results confirmed covalently bonding of phenyl groups to the graphene surface. Also, the observed results showed that substitution spatial situations on phenyl groups can affect charge transfer resistance (Rct), corrosion potential (Ecorr), corrosion current density (jcorr) and the slope of the anodic and cathodic reaction (ßa,c), demonstrating that the proposed modification method can hinder the corrosion reactions. The proposed modification led to restoring the graphene surface defects and consequently increasing its corrosion protection efficiency.
Originality/value
The obtained results from electrochemical methods proved that protection efficiency was observed in order COOH < NO2 < CH3 and MPD in the para spatial situation and showed the maximum protection efficiency of 98.6 per cent in comparison to other substitutions. Finally, the ability of proposed graphene surface modification route was further proofed by using surface methods, i.e. SEM and EDXA, and contact angles measurements.
Details
Keywords
Sharon Esquerre-Botton, Aldo Alvarez-Risco, Luigi Leclercq-Machado, Maria de las Mercedes Anderson-Seminario and Shyla Del-Aguila-Arcentales
Business models are constantly innovating to adopt international trends. Business models are shifting toward sustainable practices to meet expectations and standards and keep on…
Abstract
Business models are constantly innovating to adopt international trends. Business models are shifting toward sustainable practices to meet expectations and standards and keep on with the rest of the competitors in their industries. Recently, sustainability took a greater emphasis, and this chapter seeks to describe the main sustainability initiatives generated in international markets. Through a qualitative study made of secondary sources, strategies aligned to different sustainability initiatives are shown. Interestingly, adopting technology, digital transformation, and blockchain can enhance sustainable development.
Details
Keywords
Anshuman Kumar, Chandramani Upadhyay and Shashikant
In the present study, wire electro-discharge machining (WEDM) of Inconel 625 (In-625) is performed with the machining parameter such as spark-on time, spark-off time, wire-speed…
Abstract
Purpose
In the present study, wire electro-discharge machining (WEDM) of Inconel 625 (In-625) is performed with the machining parameter such as spark-on time, spark-off time, wire-speed, wire tension and servo voltage. The purpose of this study is to find the most favorable machining parameter setting with respect to WEDM performance such as material removal rate (MRR) and surface roughness (RA).
Design/methodology/approach
Taguchi’s L27 orthogonal array has been used to design the experiments with varying machining parameters into three-level four factors. A hybrid multi-optimization technique has been purposed with grey relation analysis and fuzzy inference system integrated with teaching learning-based optimization to achieve optimum machinability (MRR and RA in present case). The obtained result has been compared with two evolutionary optimization tools via a genetic algorithm and simulated annealing.
Findings
It has been found that proposed hybrid technique taking minimum computational time, provide better solution and avoid priority weightage calculation by decision-makers. A confirmation test has been performed at single and multi-optimal parameter settings. The decision-makers have been chosen to select any single or multi-parameter setting as per the industry’s demand.
Originality/value
The proposed optimization technique provides better machinability of In-625 using zinc-coated brass wire electrode during WEDM operation.