Search results
1 – 10 of 41Patrick Strobl, Katharina Voelkel, Thomas Schneider and Karsten Stahl
Industrial drivetrains use wet disk clutches for safe and reliable shifting. Advances over the past decades regarding the formulation of lubricants and the composition of friction…
Abstract
Purpose
Industrial drivetrains use wet disk clutches for safe and reliable shifting. Advances over the past decades regarding the formulation of lubricants and the composition of friction materials have led to reliable clutch systems. In this context, the friction behavior is crucial for the correct operation of the clutch. Nevertheless, the friction behavior and its influencing factors are still the object of modern research. The purpose of this study is to investigate how the choice of the steel disk influences the noise vibration and harshness (NVH) behavior of wet industrial clutches.
Design/methodology/approach
To investigate the influence of the steel disk on the friction and NVH behavior of industrial wet disk clutches, experimental investigations with relevant friction systems are conducted. These tests are performed at two optimized test rigs, guaranteeing transferable insights. The surface topography of the steel disk and the friction lining are measured for one friction system to identify possible relations between the surface topography and the friction behavior.
Findings
The steel disk can influence the friction behavior of wet disk clutches. Using a different steel disk surface finish, corresponding results can show differences in the shudder tendency, leading to a nonfavorable NVH behavior – different gradients of the coefficient of friction over sliding velocity cause this phenomenon.
Originality/value
This work gives novel insights into the friction and NVH behavior of industrial wet disk clutches. It supports engineers in the optimization of modern friction systems.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2024-0054/
Details
Keywords
Markus Brummer, Karl Jakob Raddatz, Matthias Moritz Schmitt, Georg Schlick, Thomas Tobie, Rüdiger Daub and Karsten Stahl
Numerous metals can be processed using the additive manufacturing process laser-based powder bed fusion of metals (PBF-LB/M, ISO/ASTM 52900). The main advantages of additive…
Abstract
Purpose
Numerous metals can be processed using the additive manufacturing process laser-based powder bed fusion of metals (PBF-LB/M, ISO/ASTM 52900). The main advantages of additive manufacturing technologies are the high degree of design freedom and the cost-effective implementation of lightweight structures. This could be profitable for gears with increased power density, combining reduced mass with considerable material strength. Current research on additively manufactured gears is focused on developing lightweight structures but is seldom accompanied by simulations and even less by mechanical testing. There has been very little research into the mechanical and material properties of additively manufactured gears. The purpose of this study is to investigate the behavior of lightweight structures in additively manufactured gears under static loads.
Design/methodology/approach
This research identifies the static load-carrying capacity of helical gears with different lightweight structures produced by PBF-LB/M with the case hardening steel 16MnCr5. A static gear loading test rig with a maximum torque at the pinion of T1 = 1200 Nm is used. Further focus is set on analyzing material properties such as the relative density, microstructure, hardness depth profile and chemical composition.
Findings
All additively manufactured gear variants show no failure or plastic deformation at the maximum test load. The shaft hub connection, the lightweight hub designs and the gearing itself are stable and intact regarding their form and function. The identified material characteristics are comparable to conventionally manufactured gears (wrought and machined), but also some particularities were observed.
Originality/value
This research demonstrates the mechanical strength of lightweight structures in gears. Future research needs to consider the dynamic load-carrying capacity of additively manufactured gears.
Details
Keywords
Ferdinand Schmid, Constantin Paschold, Thomas Lohner and Karsten Stahl
Internal gearings are commonly used in transmissions due to their advantages like high-power density. To ensure high efficiency, load-carrying capacity and good noise behavior, a…
Abstract
Purpose
Internal gearings are commonly used in transmissions due to their advantages like high-power density. To ensure high efficiency, load-carrying capacity and good noise behavior, a profound knowledge of the local gear mesh is essential. The tooth contact of internal gears relates to a convex and concave surface that form a conformal contact. This is in contrast to external gears, where two convex surfaces form a contraformal contact. This paper aims at a better understanding of conformal contacts under elastohydrodynamic lubrication (EHL) to improve the design of internal gearings.
Design/methodology/approach
An existing numerical EHL model is used for studying the characteristic properties of a hard conformal EHL line contact. A hard contraformal EHL line contact is studied as reference. Non-Newtonian fluid behavior and thermal effects are considered. By taking into account the local contact conformity and kinematics, the effects and relevance of the curvature of the lubricant gap and micro-slip are analyzed. In a parameter study, scale effects of the contact radii on film thickness, temperature rise and friction are examined.
Findings
The curvature of the lubricant gap and effects of micro-slip are small in hard conformal EHL line contacts. For high micro-slip, it can be neglected. Hence, the modeling of conformal contacts using an equivalent geometry of the contact problem is reasonable. The parameter study shows beneficial tribological aspects of the conformal contact compared to the contraformal contact. Higher film thickness and lower fluid coefficient of friction are observed for conformal contacts, which can be attributed to lower pressures for the case of the same external normal force, or to a higher contact temperature rise for the case of equivalent contact pressure.
Originality/value
Despite its widespread existence, the local geometry and kinematics in hard conformal EHL line contacts like in internal gearings have been rarely studied. The findings help for a better understanding of local contact characteristics and its relevance. The quantified scale effects help to improve the efficiency and load-carrying capacity of machine elements with hard conformal EHL contacts, like internal gearings.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2022-0366/
Details
Keywords
Mustafa Yilmaz, Ali Önüt, Thomas Lohner and Karsten Stahl
This paper aims to address the influence of lubrication methods on operational characteristics, power losses and temperature behavior of gears and bearings. It contributes to the…
Abstract
Purpose
This paper aims to address the influence of lubrication methods on operational characteristics, power losses and temperature behavior of gears and bearings. It contributes to the improvement of resource and energy efficiency of geared transmissions.
Design/methodology/approach
Experimental investigations were performed at a gear and bearing power loss test rig. Thereby, dip lubrication, injection lubrication with injection volumes from 0.05 to 2.00 l/min and minimum quantity (MQ) lubrication with an injection volume as little as 28 ml/h were considered. Measurements were evaluated in terms of no-load and load-dependent power loss, bulk temperatures and mean gear coefficients of friction.
Findings
Results show strongly reduced no-load gear and bearing losses for lubrication methods with low lubricant quantities. Load-dependent losses are similar to conventional lubrication methods and tend to be lower at high speed. This is related to higher bulk temperatures, as the heat dissipation of lubrication methods with low oil quantities is limited. Limited thermal load limits were shown to be extended by LowLoss gears.
Originality/value
Systematic investigations were conducted to evaluate the influence of dip, injection and MQ lubrication on power loss and temperature behavior of gears and bearings. The results of this study support further research on needs-based lubrication methods for gearboxes.
Details
Keywords
Christian Engelhardt, Jochen Witzig, Thomas Tobie and Karsten Stahl
Water can alter the performance of modern gear lubricants by influencing the flank load carrying capacity of gears significantly. The purpose of this paper is to investigate the…
Abstract
Purpose
Water can alter the performance of modern gear lubricants by influencing the flank load carrying capacity of gears significantly. The purpose of this paper is to investigate the influence of water contaminations in different kinds of base oils on the micro-pitting and wear performance of case carburized gears.
Design/methodology/approach
Concerning micro-pitting and wear, tests, based mostly on the following standardized tests, are performed on a Forschungsstelle fuer zahnraeder und getriebebau (FZG)-back-to-back gear test rig: micro-pitting short test Graufleckenkurztest (GFKT) according to DGMK 575 (screening test), micro-pitting test Graufleckentest (GT) according to FVA 54/7 (load stage test and endurance test) and Slow-speed wear test according to DGMK 377. To investigate the effect of water on the gear load carrying capacity dependent on different types of base oils, two polyglycol oils (PG1 and PG2), a polyalphaolefin oil, a mineral oil and an ester oil E are used. Each of these oils are common wind turbine gear oils with a viscosity ISO VG-220. Additionally, a manual transmission fluid with a viscosity of society of automotive engineers (SAE) 75W-85 is tested.
Findings
Considering the micro-pitting and wear performance, a significant decrease caused by water contaminations could not be detected. Regarding pitting damages, a generally negative influence was observed. This influence was differently distinctive for different base oil types. Especially non-polar lubricants seem to be affected negatively. The documented damages of the tooth flanks confirm this observation. While typical pitting damages appeared in test runs with polar lubricants, the disruption in test runs with non-polar lubricants was more extensive. Based on the experimental investigations, a general model of the damaging mechanisms of water contaminations in lubricants was derived. It is split into three partitions: interaction lubricant–water (effect of water on the molecular structure of base oils and additives), chemical-material-technological (especially corrosive reactions) and tribological influence (effect of water droplets in the contact zone). It has to be considered that the additive package of lubricants affects the influence of water contaminations on the flank load carrying capacity distinctively. An influence of water on the micro-pitting and wear performance in other than the given lubricants cannot be excluded.
Originality/value
While former research work was focused more on the effects of water in mineral oils, investigations concerning different types of base oils as well as different types of damages were carried out within this research project.
Details
Keywords
Kirsten Bobzin, Tobias Brögelmann, Christian Kalscheuer, Matthias Thiex, Andreas Schwarz, Martin Ebner, Thomas Lohner and Karsten Stahl
This paper aims to address the coating and compound analysis of diamond-like carbon (DLC) on steel, to understand the frictional behavior in tribological gear systems presented in…
Abstract
Purpose
This paper aims to address the coating and compound analysis of diamond-like carbon (DLC) on steel, to understand the frictional behavior in tribological gear systems presented in paper Part I. Here, the Ti and Zr modified DLC coating architectures are analyzed regarding their chemical, mechanical and thermophysical properties. The results represent a systematic analysis of the thermal insulating effect in tribological contact of DLC coated gears.
Design/methodology/approach
The approach was to evaluate the effect of the substitution of Zr through Ti at the reference coating ZrCg to TiCg and the effect on thermophysical properties. Furthermore, the influence of different carbon and hydrogen contents on the coating and compound properties was analyzed. Therefore, different discrete Ti or Zr containing DLC coatings were deposited on an industrial coating machine. Thereby the understanding of the microstructure and chemical composition of the reference coatings is increased.
Findings
Results prove comparable mechanical properties of metal modified DLC independent of differences in chemical compositions. Moreover, the compound adhesion between TiCg/16MnCr5E was improved compared to ZrCg/16MnCr5E. The effect of hydrogen content Ψ and carbon content xc on the thermophysical properties is limited by Ψ = 18 at.% and xc = 90 at.%.
Practical implications
The findings of the combined papers Part I and II show a high potential for industrial application of DLC on gears. Based on the results DLC coatings and gears can be tailored to each other.
Originality/value
Systematic analysis of DLC coatings were conducted to evaluate the effect of titanium, carbon and hydrogen on thermophysical properties.
Details
Keywords
Milan Omasta, Martin Ebner, Petr Šperka, Thomas Lohner, Ivan Krupka, Martin Hartl, Bernd-Robert Hoehn and Karsten Stahl
The purpose of this study is to investigate lubricant film-forming capability of oil-impregnated sintered material in highly loaded non-conformal contacts. This self-lubrication…
Abstract
Purpose
The purpose of this study is to investigate lubricant film-forming capability of oil-impregnated sintered material in highly loaded non-conformal contacts. This self-lubrication mechanism is well described in lightly loaded conformal contacts such as journal bearings; however, only a little has been published about the application to highly loaded contacts under elastohydrodynamic lubrication regime (EHL).
Design/methodology/approach
Thin film colorimetric interferometry is used to describe the effect of different operating conditions on lubricant film formation in line contacts.
Findings
Under fully flooded conditions, the effect of porous structure can be mainly traced back to the different elastic properties. When the contact is lubricated only by oil bleeding from the oil-impregnated sintered material, starvation is likely to occur. It is indicated that lubricant film thickness is mainly governed by oil bleeding capacity. The relationship between oil starvation parameters corresponds well with classic starved EHL theory.
Practical implications
To show practical, relevant limitations of the considered self-lubrication system, time tests were conducted. The findings indicate that EHL contact with oil-impregnated sintered material may provide about 40 per cent of fully flooded film thickness.
Originality/value
For the first time, the paper presents results on the EHL film-forming capability of oil-impregnated sintered material by measuring the lubricant film thickness directly. The present paper identifies the phenomena involved, which is necessary for the understanding of the behavior of this complex tribological system.
Details
Keywords
Andreas Schwarz, Martin Ebner, Thomas Lohner, Karsten Stahl, Kirsten Bobzin, Tobias Brögelmann, Christian Kalscheuer and Matthias Thiex
This paper aims to address the influence of diamond-like carbon (DLC) coatings on the frictional power loss of spur gears. It shows potentials for friction and bulk temperature…
Abstract
Purpose
This paper aims to address the influence of diamond-like carbon (DLC) coatings on the frictional power loss of spur gears. It shows potentials for friction and bulk temperature reduction in industrial use. From a scientific point of view, the thermal insulation effect on fluid friction is addressed, which lowers viscosity in the gear contact due to increasing contact temperature.
Design/methodology/approach
Thermal insulation effect is analyzed in detail by means of the heat balance and micro thermal network of thermal elastohydrodynamic lubrication contacts. Preliminary results at a twin-disk test rig are summarized to categorize friction and bulk temperature reduction by DLC coatings. Based on experiments at a gear efficiency test rig, the frictional power losses and bulk temperatures of DLC-coated gears are investigated, whereby load, speed, oil temperature and coatings are varied.
Findings
Experimental investigations at the gear efficiency test rig showed friction and bulk temperature reduction for all operating conditions of DLC-coated gears compared to uncoated gears. This effect was most pronounced for high load and high speed. A reduction of the mean gear coefficient of friction on average 25% and maximum 55% was found. A maximum reduction of bulk temperature of 15% was observed.
Practical implications
DLC-coated gears show a high potential for reducing friction and improving load-carrying capacity. However, the industrial implementation is restrained by the limited durability of coatings on gear flanks. Therefore, a further and overall consideration of key durability factors such as substrate material, pretreatment, coating parameters and gear geometry is necessary.
Originality/value
Thermal insulation effect of DLC coatings was shown by theoretical analyses and experimental investigations at model test rigs. Although trial tests on gears were conducted in literature, this study proves the friction reduction by DLC-coated gears for the first time systematically in terms of various operating conditions and coatings.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0257/
Details
Keywords
Andreas Ziegltrum, Stefan Emrich, Thomas Lohner, Klaus Michaelis, Alexander Brodyanski, Rolf Merz, Michael Kopnarski, Bernd-Robert Hoehn and Karsten Stahl
This paper aims to address the influence of tribofilms and running-in on failures and friction of gears. The operation regime of gears is increasingly shifted to mixed and…
Abstract
Purpose
This paper aims to address the influence of tribofilms and running-in on failures and friction of gears. The operation regime of gears is increasingly shifted to mixed and boundary lubrication, where high local pressures and temperatures occur at solid interactions in the gear contact. This results in strong tribofilm formation due to interactions of lubricant and its additives with the gear flanks and is related to changes of surface topography especially pronounced during running-in.
Design/methodology/approach
Experiments at a twin-disk and gear test rig were combined with chemical, structural and mechanical tribofilm characterization by surface analysis. Pitting lifetime, scuffing load carrying capacity and friction of ground spur gears were investigated for a mineral oil with different additives.
Findings
Experimental investigations showed a superordinate influence of tribofilms over surface roughness changes on damage and friction behavior of gears. Surface analysis of tribofilms provides explanatory approaches for friction behavior and load carrying capacity. A recommendation for the running-in of spur gears was derived.
Originality/value
Experimental methods and modern surface analysis were combined to study the influence of running-in and tribofilms on different failures and friction of spur gears.
Details
Keywords
Lei Cao, Jianlin Cai, Cheng Wang, Tianyou Yang, Wei Zhou and Liwu Wang
The purpose of this study is to describe and observe the influence of boundary slip associated with an arbitrary entrainment angle on the contact lubrication properties of…
Abstract
Purpose
The purpose of this study is to describe and observe the influence of boundary slip associated with an arbitrary entrainment angle on the contact lubrication properties of ellipses.
Design/methodology/approach
Based on the modified Reynolds equation, the boundary slip of any angle is considered in the elliptic contact, and numerical simulation is carried out. In the above calculation, the progressive mesh densification method is used, which greatly reduces the computation time.
Findings
The results indicate that the variation of film thickness corresponding to different entrainment angles is distinct from those without considering boundary slip. In addition, boundary slip reduces the central film thickness and minimum film thickness, which makes the hydrodynamic pressure distribution smoother.
Originality/value
The present study focuses on the specific condition with the arbitrary direction of rolling and sliding velocity found in hypoid gears and worm, and some other components. The influence of boundary slip associated with arbitrary entrainment angle on the lubrication film thickness in elliptical contacts is first revealed, which improves a good understanding of elastohydrodynamic lubrication characteristics.
Details