Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 14 July 2022

Karlo Puh and Marina Bagić Babac

As the tourism industry becomes more vital for the success of many economies around the world, the importance of technology in tourism grows daily. Alongside increasing tourism…

8937

Abstract

Purpose

As the tourism industry becomes more vital for the success of many economies around the world, the importance of technology in tourism grows daily. Alongside increasing tourism importance and popularity, the amount of significant data grows, too. On daily basis, millions of people write their opinions, suggestions and views about accommodation, services, and much more on various websites. Well-processed and filtered data can provide a lot of useful information that can be used for making tourists' experiences much better and help us decide when selecting a hotel or a restaurant. Thus, the purpose of this study is to explore machine and deep learning models for predicting sentiment and rating from tourist reviews.

Design/methodology/approach

This paper used machine learning models such as Naïve Bayes, support vector machines (SVM), convolutional neural network (CNN), long short-term memory (LSTM) and bidirectional long short-term memory (BiLSTM) for extracting sentiment and ratings from tourist reviews. These models were trained to classify reviews into positive, negative, or neutral sentiment, and into one to five grades or stars. Data used for training the models were gathered from TripAdvisor, the world's largest travel platform. The models based on multinomial Naïve Bayes (MNB) and SVM were trained using the term frequency-inverse document frequency (TF-IDF) for word representations while deep learning models were trained using global vectors (GloVe) for word representation. The results from testing these models are presented, compared and discussed.

Findings

The performance of machine and learning models achieved high accuracy in predicting positive, negative, or neutral sentiments and ratings from tourist reviews. The optimal model architecture for both classification tasks was a deep learning model based on BiLSTM. The study’s results confirmed that deep learning models are more efficient and accurate than machine learning algorithms.

Practical implications

The proposed models allow for forecasting the number of tourist arrivals and expenditure, gaining insights into the tourists' profiles, improving overall customer experience, and upgrading marketing strategies. Different service sectors can use the implemented models to get insights into customer satisfaction with the products and services as well as to predict the opinions given a particular context.

Originality/value

This study developed and compared different machine learning models for classifying customer reviews as positive, negative, or neutral, as well as predicting ratings with one to five stars based on a TripAdvisor hotel reviews dataset that contains 20,491 unique hotel reviews.

Details

Journal of Hospitality and Tourism Insights, vol. 6 no. 3
Type: Research Article
ISSN: 2514-9792

Keywords

Available. Open Access. Open Access
Article
Publication date: 6 April 2023

Karlo Puh and Marina Bagić Babac

Predicting the stock market's prices has always been an interesting topic since its closely related to making money. Recently, the advances in natural language processing (NLP…

8126

Abstract

Purpose

Predicting the stock market's prices has always been an interesting topic since its closely related to making money. Recently, the advances in natural language processing (NLP) have opened new perspectives for solving this task. The purpose of this paper is to show a state-of-the-art natural language approach to using language in predicting the stock market.

Design/methodology/approach

In this paper, the conventional statistical models for time-series prediction are implemented as a benchmark. Then, for methodological comparison, various state-of-the-art natural language models ranging from the baseline convolutional and recurrent neural network models to the most advanced transformer-based models are developed, implemented and tested.

Findings

Experimental results show that there is a correlation between the textual information in the news headlines and stock price prediction. The model based on the GRU (gated recurrent unit) cell with one linear layer, which takes pairs of the historical prices and the sentiment score calculated using transformer-based models, achieved the best result.

Originality/value

This study provides an insight into how to use NLP to improve stock price prediction and shows that there is a correlation between news headlines and stock price prediction.

Details

American Journal of Business, vol. 38 no. 2
Type: Research Article
ISSN: 1935-519X

Keywords

1 – 2 of 2
Per page
102050