Search results

1 – 1 of 1
Article
Publication date: 18 November 2022

Libiao Bai, Lan Wei, Yipei Zhang, Kanyin Zheng and Xinyu Zhou

Project portfolio risk (PPR) management plays an important role in promoting the smooth implementation of a project portfolio (PP). Accurate PPR prediction helps managers cope…

202

Abstract

Purpose

Project portfolio risk (PPR) management plays an important role in promoting the smooth implementation of a project portfolio (PP). Accurate PPR prediction helps managers cope with risks timely in complicated PP environments. However, studies on accurate PPR impact degree prediction, which consists of both risk occurrence probabilities and risk impact consequences considering project interactions, are limited. This study aims to model PPR prediction and expand PPR prediction tools.

Design/methodology/approach

In this study, the authors build a PPR prediction model based on a genetic algorithm and back-propagation neural network (GA-BPNN) integrated with entropy-trapezoidal fuzzy numbers. Then, the authors verify the proposed model with real data and obtain PPR impact degrees.

Findings

The test results indicate that the proposed method achieves an average absolute error of 0.002 and an average prediction accuracy rate of 97.8%. The former is reduced by 0.038, while the latter is improved by 32.1% when compared with the results of the original BPNN model. Finally, the authors conduct an index sensitivity analysis for identifying critical risks to effectively control them.

Originality/value

This study develops a hybrid PPR prediction model that integrates a GA-BPNN with entropy-trapezoidal fuzzy numbers. The authors use this model to predict PPR impact degrees, which consist of both risk occurrence probabilities and risk impact consequences considering project interactions. The results provide insights into PPR management.

Details

Journal of Enterprise Information Management, vol. 37 no. 3
Type: Research Article
ISSN: 1741-0398

Keywords

1 – 1 of 1