Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 15 October 2021

Kangqu Zhou, Chen Yang, Lvcheng Li, Cong Miao, Lijun Song, Peng Jiang and Jiafu Su

This paper proposes a recommendation method that mines the semantic relationship between resources and combine it with collaborative filtering (CF) algorithm for crowdsourcing…

185

Abstract

Purpose

This paper proposes a recommendation method that mines the semantic relationship between resources and combine it with collaborative filtering (CF) algorithm for crowdsourcing knowledge-sharing communities.

Design/methodology/approach

First, structured tag trees are constructed based on tag co-occurrence to overcome the tags' lack of semantic structure. Then, the semantic similarity between tags is determined based on tag co-occurrence and the tag-tree structure, and the semantic similarity between resources is calculated based on the semantic similarity of the tags. Finally, the user-resource evaluation matrix is filled based on the resource semantic similarity, and the user-based CF is used to predict the user's evaluation of the resources.

Findings

Folksonomy is a knowledge classification method that is suitable for crowdsourcing knowledge-sharing communities. The semantic similarity between resources can be obtained according to the tags in the folksonomy system, which can be used to alleviate the data sparsity and cold-start problems of CF. Experimental results show that compared with other algorithms, the algorithm in this paper performs better in mean absolute error (MAE) and F1, which indicates that the proposed algorithm yields better performance.

Originality/value

The proposed folksonomy-based CF method can help users in crowdsourcing knowledge-sharing communities to better find the resources they need.

Details

Kybernetes, vol. 52 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 1 of 1
Per page
102050