Search results
1 – 1 of 1Kamal Hamaz and Fouzia Benchikha
With the development of systems and applications, the number of users interacting with databases has increased considerably. The relational database model is still considered as…
Abstract
Purpose
With the development of systems and applications, the number of users interacting with databases has increased considerably. The relational database model is still considered as the most used model for data storage and manipulation. However, it does not offer any semantic support for the stored data which can facilitate data access for the users. Indeed, a large number of users are intimidated when retrieving data because they are non-technical or have little technical knowledge. To overcome this problem, researchers are continuously developing new techniques for Natural Language Interfaces to Databases (NLIDB). Nowadays, the usage of existing NLIDBs is not widespread due to their deficiencies in understanding natural language (NL) queries. In this sense, the purpose of this paper is to propose a novel method for an intelligent understanding of NL queries using semantically enriched database sources.
Design/methodology/approach
First a reverse engineering process is applied to extract relational database hidden semantics. In the second step, the extracted semantics are enriched further using a domain ontology. After this, all semantics are stored in the same relational database. The phase of processing NL queries uses the stored semantics to generate a semantic tree.
Findings
The evaluation part of the work shows the advantages of using a semantically enriched database source to understand NL queries. Additionally, enriching a relational database has given more flexibility to understand contextual and synonymous words that may be used in a NL query.
Originality/value
Existing NLIDBs are not yet a standard option for interfacing a relational database due to their lack for understanding NL queries. Indeed, the techniques used in the literature have their limits. This paper handles those limits by identifying the NL elements by their semantic nature in order to generate a semantic tree. This last is a key solution towards an intelligent understanding of NL queries to relational databases.
Details