Search results

1 – 10 of 36
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 2 January 2018

Kalidasan K., R. Velkennedy, Jan Taler, Dawid Taler, Pawel Oclon and Rajesh Kanna P.

This study aims to perform a numerical study of air convection in a rectangular enclosure with two isothermal blocks and oscillating bottom wall temperature under laminar flow…

152

Abstract

Purpose

This study aims to perform a numerical study of air convection in a rectangular enclosure with two isothermal blocks and oscillating bottom wall temperature under laminar flow conditions. The geometry of the enclosure contains two isothermal blocks placed equidistant along the streamwise direction. The top wall is assumed to be cold (low temperature). The bottom wall temperature is either kept as constant or sinusoidally varied with time. The vertical walls are considered as adiabatic. The flow is diagonally upwards and assisted by the buoyancy force. The inlet is positioned at the bottom of the left wall, and the outlet is placed at the top of the right wall. The parameters considered in this paper are Rayleigh number (104-106), Prantdl number (0.71), amplitude of temperature oscillation (0-0.5) and the period (0.2). The effects of these parameters on heat transfer and fluid flow inside the open cavity are studied. The periodic results of fluid flow are illustrated with streamlines and the heat transfer is represented by isotherms and time-averaged Nusselt number. By virtue of increasing buoyancy, the heat transfer accelerates with an increase in the Rayleigh number. Also, the heat transfer is intensive with an increase in the bottom wall temperature.

Design/methodology/approach

The momentum and energy equations are solved simultaneously. The energy equation (3) is initially solved using the alternating direction implicit (ADI) method. The results of the energy equation are updated into the vorticity equation. The unsteady vorticity transport equation is also solved using the ADI method. Dimensionless time step equal to 0.01 is used for high Ra (105 and 106) and 0.001 is used for low Ra (104). Convergence criteria of 10−5 is used during the vorticity, stream function and temperature calculations, as the sum of error should be very small.

Findings

Numerical study of air convection in a rectangular enclosure with two isothermal blocks and oscillating bottom wall temperature is performed under laminar flow condition. The effect of the isothermal blocks on the heat transfer is analyzed for different Rayleigh numbers and the following conclusions are arrived. The hydrodynamic blockage effect is subdued by the isothermal heating of square blocks. Based on the streamline diagrams, it is found that the formation of vortices is greatly influenced by the Rayleigh number when all the walls are exposed to a constant wall temperature. The influence of amplitude on the heat transfer is remarkable on the wall exposed to oscillating temperature and is subtle on the opposite static cold wall. The heat transfer increases with an increase in the Rayleigh number and temperature.

Research limitations/implications

Flow is assumed to be two-dimensional and laminar subject to oscillatory boundary condition. The present investigation aims to study natural convection inside the cavity filled with air whose bottom wall is subject to time-variant temperature. The buoyancy is further intensified through two isothermal square blocks placed equidistant along the streamwise direction at mid-height.

Originality/value

The authors have developed a CFD solver to simulate the situation. Effect of Rayleigh number subject to oscillatory thermal boundary condition is simulated. Streamline contour and isotherm contour are presented. Local and average Nusselt numbers are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 14 July 2021

Sivaraj Chinnasamy, Vignesh E. and Mikhail Sheremet

The study aims to investigate magnetohydrodynamics thermal convection energy transference and entropy production in an open chamber saturated with ferrofluid having an isothermal…

101

Abstract

Purpose

The study aims to investigate magnetohydrodynamics thermal convection energy transference and entropy production in an open chamber saturated with ferrofluid having an isothermal solid block.

Design/methodology/approach

Analysis of thermal convection phenomenon was performed for an open chamber saturated with a nanofluid having an isothermal solid unit placed inside the cavity with various aspect ratios. The left border temperature is kept at Tc. An external cooled nanofluid of fixed temperature Tc penetrates into the domain from the right open border. The nanofluid circulation is Newtonian, incompressible, and laminar. The uniform magnetic field of strength B at the tilted angle of γ is applied. The finite volume technique is used to work out the non-linear equations of liquid motion and energy transport. For Rayleigh number (Ra=1e+7), numerical simulations were executed for varying the solid volume fractions of the nanofluid (ϕ = 0.01–0.04), the aspect ratios of a solid body (As = 0.25–4), the Hartmann number (Ha = 0–100), the magnetic influence inclination angle (γ = 0–π/2) and the non-dimensional temperature drop (Ω = 0.001–0.1) on the liquid motion, heat transference and entropy production.

Findings

Numerical outcomes are demonstrated by using isolines of temperature and stream function, profiles of mean Nusselt number and entropy generations. The results indicate that the entropy generation rate and mean Nu can be decreased with an increase in Ha. The inner solid block of As = 0.25 reflects the maximum heat transfer rate in comparison with other considered blocks. The addition of nano-sized particles results in a growth of energy transport and mean entropy generations.

Originality/value

An efficient computational technique has been developed to solve natural convection problem for an open chamber. The originality of this research is to scrutinize the convective transport and entropy production in an open domain with inner body. The outcomes would benefit scientists and engineers to become familiar with the investigation of convective energy transference and entropy generation in open chambers with inner bodies, and the way to predict the energy transference strength in the advanced engineering systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 3 October 2019

Mikhail A. Sheremet, Hakan F. Öztop and Nidal Abu-Hamdeh

The purpose of this study is to work on heat transfer enhancement within different engineering cavities is the major aim of most technical solutions. Such intensification can be…

105

Abstract

Purpose

The purpose of this study is to work on heat transfer enhancement within different engineering cavities is the major aim of most technical solutions. Such intensification can be obtained by using “smart” liquids known as nanoliquids and solid fins. Therefore, free convective thermal transmission within square nanoliquid chamber under the influence of complex fins is studied. The considered fins are the combination of wall-mounted adiabatic fin and an adiabatic block over this fin.

Design/methodology/approach

Influences of the Rayleigh number, location of the local adiabatic block and nanoparticles concentration on liquid motion and energy transport are studied. Finite difference technique was used to solve the governing equations.

Findings

It has been ascertained that the energy transport intensification can be reached for the middle position of this local block within the cavity.

Originality/value

The main originality of this work is to use intermittent block in a nanofluid filled cavity under differentially heated conditions. One constant and location of one of the passive element is constant and other one is fixed, which is the intermittent block, is used to control heat and fluid flow. Thus, distance between blocks is allowed to control of the velocity and kinetic energy. In this way, temperature distribution also can be controlled inside the square cross-sectional closed space. Another originality of the work is to use nanoparticle added main flow for this geometry. Thus, energy efficiency can be controlled via adiabatic intermittent blocks without spending any extra energy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 16 January 2020

Mokhtar Ferhi and Ridha Djebali

This paper aims to perform the lattice Boltzmann simulation of conjugate natural convection heat transfer, heat flow visualization via heatlines approach and entropy generation in…

107

Abstract

Purpose

This paper aims to perform the lattice Boltzmann simulation of conjugate natural convection heat transfer, heat flow visualization via heatlines approach and entropy generation in a partitioned medium filled with Ag-MgO (15-85%)/water.

Design/methodology/approach

The lattice Boltzmann method (LBM) is used to predict the dynamic and thermal behaviors. Experimental correlations for dynamic viscosity and thermal conductivity versus solid volume fraction are used. The study is conducted for the ranges of Rayleigh number 103 ≤ Ra ≤ 106, the partitioner thickness 0.01 ≤ δ ≤ 0.9, its position 0.15 ≤ Xs ≤ 0.85 and the hybrid nano-suspensions volume fraction 0% ≤ ϕ ≤ 2%.

Findings

The effects of varying of controlling parameters on the convective flow patterns, temperature contours, heat transfers, the heatlines and the entropy generation are presented. It has been found that the maximum rate of heat transfer enhancement occurs for low Ra numbers (103) and is close to 13.52%. The solid thickness d and its horizontal position Xs have a substantial influence on the heat transfer rate, flow structure, heatline, total entropy generation and Bejan number. Besides, the maximum heat transfer is detected for high Ra and δ ≈ 1 and the percentage of augmentation is equal to 65.55% for ϕ = 2%. According to the horizontal position, the heat transfer remains invariant for Ra = 103 and takes a maximum value near the active walls for Ra ≥ 104. The total entropy generation increases with Ra and decreases with ϕ for Ra = 106. The increase of ϕ from 0 to 2% leads to a reduction in close to 40.76%. For this value of Ra, the entropy is the maximum for δ = 0.4 and Xs = 0.35 and Xs = 0.65%. Moreover, as the Ra increases the Bejan number undergoes a decrease. The Bejan number is the maximum for Ra = 103 independently to δ and Xs. The superior thermal performance manifests at low Ra and high value of δ independently to the positions of the conducting body.

Originality/value

The originality of this paper is to analyze the hybrid nano-additive effects on the two-dimensional conjugate natural convection in a partitioned medium using the LBM. The experimental correlations used for the effective thermal conductivity and dynamic viscosity give credibility to our study. Different approaches such as heatlines and entropy generation are used.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 23 November 2018

Mahmoud Salari, Emad Hasani Malekshah, Mohammad Reza Sarlak, Masoud Hasani Malekshah and Mohammad Pilfoush

The purpose of this paper is to investigate the three-dimensional natural convection and entropy generation in a cuboid enclosure filled with two immiscible fluids of nanofluid…

53

Abstract

Purpose

The purpose of this paper is to investigate the three-dimensional natural convection and entropy generation in a cuboid enclosure filled with two immiscible fluids of nanofluid and air.

Design/methodology/approach

One surface of the enclosure is jagged and another one is smooth. The finite volume approach is applied for computation. There are two partially side heaters. Furthermore, the Navier–Stokes equations and entropy generation formulation are solved in the 3D form.

Findings

The effects of different governing parameters, such as the jagged surface (JR=0, 0.02, 0.04, 0.08, 0.12 and 0.16), Rayleigh number (103Ra⩽106) and solid volume fraction of nanofluid (φ=1, 1.5, 2 vol%), on the fluid flow, temperature field, Nusselt number, volumetric entropy generation and Bejan number are presented, comprehensively. The results indicate that the average Nusselt number increases with the increase in the Rayleigh number and solid volume fraction of nanofluid. Moreover, the flow structure is significantly affected by the jagged surface.

Originality/value

The originality of this work is to analyze the natural-convection fluid flow and heat transfer under the influence of jagged surfaces of electrodes in high-current lead–acid batteries.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 25 June 2019

Nirmal Kumar Manna, Nirmalendu Biswas and Pallab Sinha Mahapatra

This study aims to enhance natural convection heat transfer for a porous thermal cavity. Multi-frequency sinusoidal heating is applied at the bottom of a porous square cavity…

228

Abstract

Purpose

This study aims to enhance natural convection heat transfer for a porous thermal cavity. Multi-frequency sinusoidal heating is applied at the bottom of a porous square cavity, considering top wall adiabatic and cooling through the sidewalls. The different frequencies, amplitudes and phase angles of sinusoidal heating are investigated to understand their major impacts on the heat transfer characteristics.

Design/methodology/approach

The finite volume method is used to solve the governing equations in a two-dimensional cavity, considering incompressible laminar flow, Boussinesq approximation and Brinkman–Forchheimer–Darcy model. The mean-temperature constraint is applied for enhancement analysis.

Findings

The multi-frequency heating can markedly enhance natural convection heat transfer even in the presence of porous medium (enhancement up to ∼74 per cent). Only the positive phase angle offers heat transfer enhancement consistently in all frequencies (studied).

Research limitations/implications

The present research idea can usefully be extended to other multi-physical areas (nanofluids, magneto-hydrodynamics, etc.).

Practical implications

The findings are useful for devices working on natural convection.

Originality/value

The enhancement using multi-frequency heating is estimated under different parametric conditions. The effect of different frequencies of sinusoidal heating, along with the uniform heating, is collectively discussed from the fundamental point of view using the average and local Nusselt number, thermal and hydrodynamic boundary layers and heatlines.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 20 June 2018

Mikhail Sheremet and Sivaraj Chinnasamy

The purpose of this study is to examine the radiation effect on the natural convective heat transfer of an alumina–water nanofluid in a square cavity in the presence of centered…

99

Abstract

Purpose

The purpose of this study is to examine the radiation effect on the natural convective heat transfer of an alumina–water nanofluid in a square cavity in the presence of centered nonuniformly heated plate.

Design/methodology/approach

The square cavity filled with alumina–water nanofluid has a nonuniformly heated plate placed horizontally or vertically at its center. The plate is heated isothermally with linearly varying temperature. The vertical walls are cooled isothermally with a constant temperature, while the horizontal walls are insulated. The governing equations have been discretized using finite volume method on a uniformly staggered grid system. Simulations were carried out for different values of the heated plate nonuniformity parameter (λ = –1, 0 and 1), the nanoparticles solid volume fraction (Φ = 0.01 − 0.04) and the radiation parameter (Rd = 0 – 2) at the Rayleigh number of Ra = 1e+07.

Findings

It is found that the total heat transfer rate is enhanced with an increase in the radiation parameter for both the horizontal and vertical plates. The role of nanoparticles addition to the base fluid can have dual effects on the heat transfer rate by augmenting and dampening for the absence of radiation while it dampens the heat transfer rate for the presence of radiation.

Originality/value

The originality of this work is to analyze steady natural convection in a square cavity filled with a water-based nanofluid in the presence of centered nonuniformly heated plate. The results would benefit scientists and engineers to become familiar with the analysis of convective heat and mass transfer in nanofluids, and the way to predict the properties of nanofluid convective flow in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors, electronics, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 13 May 2019

Andrzej Frąckowiak, David Spura, Uwe Gampe and Michał Ciałkowski

T-shaped cavities occur by design in many technical applications. An example of such a stator cavity is the side space between the guide vane carriers and the outer casing of a…

178

Abstract

Purpose

T-shaped cavities occur by design in many technical applications. An example of such a stator cavity is the side space between the guide vane carriers and the outer casing of a steam turbine. Thermal conditions inside it have a significant impact on the deformation of the turbine casing. In order to improve its prediction, the purpose of this paper is to provide a methodology to gain better knowledge of the local heat transfer at the cavity boundaries based on experimental results.

Design/methodology/approach

To determine the heat transfer coefficient distribution inside a model cavity with the help of a scaled generic test rig, an inverse heat conduction problem is posed and a method for solving such type of problems in the form of linear combinations of Trefftz functions is presented.

Findings

The results of the calculations are compared with another inverse method using first-order gradient optimization technique as well as with estimated values obtained with an analytic two-dimensional thermal network model, and they show an excellent agreement. The calculation procedure is proved to be numerically stable for different degrees of complexity of the sought boundary conditions.

Originality/value

This paper provides a universal and robust methodology for the fast direct determination of an arbitrary distribution of heat transfer coefficients based on material temperature measurements spread over the confining wall.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 23 January 2024

Md Motiur Rahaman, Nirmalendu Biswas, Apurba Kumar Santra and Nirmal K. Manna

This study aims to delve into the coupled mixed convective heat transport process within a grooved channel cavity using CuO-water nanofluid and an inclined magnetic field. The…

107

Abstract

Purpose

This study aims to delve into the coupled mixed convective heat transport process within a grooved channel cavity using CuO-water nanofluid and an inclined magnetic field. The cavity undergoes isothermal heating from the bottom, with variations in the positions of heated walls across the grooved channel. The aim is to assess the impact of heater positions on thermal performance and identify the most effective configuration.

Design/methodology/approach

Numerical solutions to the evolved transport equations are obtained using a finite volume method-based indigenous solver. The dimensionless parameters of Reynolds number (1 ≤ Re ≤ 500), Richardson number (0.1 ≤ Ri ≤ 100), Hartmann number (0 ≤ Ha ≤ 70) and magnetic field inclination angle (0° ≤ γ ≤ 180°) are considered. The solved variables generate both local and global variables after discretization using the semi-implicit method for pressure linked equations algorithm on nonuniform grids.

Findings

The study reveals that optimal heat transfer occurs when the heater is positioned at the right corner of the grooved cavity. Heat transfer augmentation ranges from 0.5% to 168.53% for Re = 50 to 300 compared to the bottom-heated case. The magnetic field’s orientation significantly influences the average heat transfer, initially rising and then declining with increasing inclination angle. Overall, this analysis underscores the effectiveness of heater positions in achieving superior thermal performance in a grooved channel cavity.

Research limitations/implications

This concept can be extended to explore enhanced thermal performance under various thermal boundary conditions, considering wall curvature effects, different geometry orientations and the presence of porous structures, either numerically or experimentally.

Practical implications

The findings are applicable across diverse fields, including biomedical systems, heat exchanging devices, electronic cooling systems, food processing, drying processes, crystallization, mixing processes and beyond.

Originality/value

This work provides a novel exploration of CuO-water nanofluid flow in mixed convection within a grooved channel cavity under the influence of an inclined magnetic field. The influence of different heater positions on thermomagnetic convection in such a cavity has not been extensively investigated before, contributing to the originality and value of this research.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 29 May 2020

Kh. Hosseinzadeh, So Roghani, A. Asadi, Amirreza Mogharrebi and D.D. Ganji

The purpose of this paper is to investigate micropolar magnetohydrodynamics (MHD) fluid flow passing over a vertical plate. Three different base fluids have been used that include…

245

Abstract

Purpose

The purpose of this paper is to investigate micropolar magnetohydrodynamics (MHD) fluid flow passing over a vertical plate. Three different base fluids have been used that include water, ethylene glycol and ethylene glycol/water (50%–50%). Also, a nanoparticle was used in all of the base fluids. The effects of natural convection heat transfer and magnetic field have been taken into account.

Design/methodology/approach

The main purpose of solving the governing equations is to scrutinize the effects of the magnetic parameter, the nanoparticle volume fraction, micropolar parameter and nanoparticles shape factor on velocity, temperature and microrotation profiles, the skin friction coefficient and the Nusselt number. These surveys have been considered for three base fluids simultaneously.

Findings

The results indicate that for water-based fluids, the temperature profile of lamina-shaped nanoparticles is 38.09% higher than brick-shaped nanoparticles.

Originality/value

This paper provides micropolar MHD fluid flow analysis considering natural convection heat transfer and magnetic field in three different base fluids. The aim of assessments is the diagnosis of some parameter effects, such as magnetic parameter and nanoparticle volume fraction, on velocity, temperature and microrotation profiles and components. Also, the use of mixed base fluids presented as a novelty in this paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 36
Per page
102050