Search results

1 – 2 of 2
Article
Publication date: 12 April 2024

Lara E. Yousif, Mayyadah S. Abed, Aseel B. Al-Zubidi and Kadhim K. Resan

The number of people with special needs, including citizens and military personnel, has increased as a result of terrorist attacks and challenging conditions in Iraq and other…

Abstract

Purpose

The number of people with special needs, including citizens and military personnel, has increased as a result of terrorist attacks and challenging conditions in Iraq and other countries. With almost 80% of the world’s amputees having below-the-knee amputations, Iraq has become a global leader in the population of amputees. Important components found in lower limb prostheses include the socket, pylon (shank), prosthetic foot and connections.

Design/methodology/approach

There are two types of prosthetic feet: articulated and nonarticulated. The solid ankle cushion heel foot is the nonarticulated foot that is most frequently used. The goal of this study is to use a composite filament to create a revolutionary prosthetic foot that will last longer, have better dorsiflexion and be more stable and comfortable for the user. The current study, in addition to pure polylactic acid (PLA) filament, 3D prints test items using a variety of composite filaments, such as PLA/wood, PLA/carbon fiber and PLA/marble, to accomplish this goal. The experimental step entails mechanical testing of the samples, which includes tensile testing and hardness evaluation, and material characterization by scanning electron microscopy-energy dispersive spectrometer analysis. The study also presents a novel design for the nonarticulated foot that was produced with SOLIDWORKS and put through ANSYS analysis. Three types of feet are produced using PLA, PLA/marble and carbon-covered PLA/marble materials. Furthermore, the manufactured prosthetic foot undergoes testing for dorsiflexion and fatigue.

Findings

The findings reveal that the newly designed prosthetic foot using carbon fiber-covered PLA/marble material surpasses the PLA and PLA/marble foot in terms of performance, cost-effectiveness and weight.

Originality/value

To the best of the author’s knowledge, this is the first study to use composite filaments not previously used, such as PLA/wood, PLA/carbon fiber and PLA/marble, to design and produce a new prosthetic foot with a longer lifespan, improved dorsiflexion, greater stability and enhanced comfort for the patient. Beside the experimental work, a numerical technique specifically the finite element method, is used to assess the mechanical behavior of the newly designed foot structure.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 October 2024

Inas Zaki Hadi Al-Araji, Meenaloshini A/P Satgunam, Abreeza Noorlina Bt Abd Manap, Kadhim K. Resan and Ahmed K. Muhammad

The purpose of this study was to fabricate a flexible inner socket with enhanced stiffness and hardness distribution by using the functional gradient method (FGM). The FGM…

Abstract

Purpose

The purpose of this study was to fabricate a flexible inner socket with enhanced stiffness and hardness distribution by using the functional gradient method (FGM). The FGM technique can improve the comfort and flexibility of amputees through the use of a socket that is built via the direct method.

Design/methodology/approach

Six flexible inner socket samples were fabricated with varying weight fractions of rice husk ash-to-silicone rubber. The tensile strength and hardness of each sample were assessed. Then, numerical analyses were conducted using SOLIDWORKS software to evaluate the pressure distribution on the inner and outer layers of the flexible socket.

Findings

The hardness and stiffness of the fabricated flexible inner socket gradually increased with the weight ratio of rice husk ash-to-silicone rubber, so when it was in contact with the skin, it approximated the stiffness and hardness of the skin to ensure comfort, and when reaching a higher value in the socket contact layer, it prevented penetration through the flexible inner socket. In addition, the pressure distribution at the external layer of the flexible inner socket has improved.

Research limitations/implications

A budget of US$500 limited the research to create a flexible inner socket that keeps the socket from penetrating the skin.

Practical implications

The FGM technique created a flexible inner socket that balances hardness and stiffness to ensure comfort and prevent wounds for its users, lower limb amputees. The commercial value resides in the accessibility of a secure and comfortable flexible inner socket for amputees worldwide, enabling them to overcome the issue of excessive stiffness typically associated with sockets made using the direct method.

Originality/value

This study introduces the use of FGM to fabricate a flexible inner prosthetic socket with enhanced stiffness and hardness distribution. The approach of using varying weight fractions of rice husk ash-to-silicone rubber to improve the comfort and flexibility of prosthetic sockets is a novel contribution to the field. Given the high stiffness of flexible internal sockets and their ability to maintain flexibility in the part in contact with the skin, such sockets manufactured using this method prevent pain and skin ulcers that previously occurred when sockets are manufactured via the direct method.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 2 of 2