David W. Wagner, Kaan Divringi, Can Ozcan, M. Grujicic, B. Pandurangan and A. Grujicic
The aim of this paper is to present and evaluate a methodology for automatically constructing and applying the physiologically‐realistic boundary/loading conditions for use in the…
Abstract
Purpose
The aim of this paper is to present and evaluate a methodology for automatically constructing and applying the physiologically‐realistic boundary/loading conditions for use in the structural finite element analysis of the femur during various exertion tasks (e.g. gait/walking).
Design/methodology/approach
To obtain physiologically‐realistic boundary/loading conditions needed in the femur structural finite element analysis, a whole‐body musculoskeletal inverse dynamics analysis is carried out and the resulting muscle forces and joint reaction forces/moments extracted.
Findings
The finite element results obtained are compared with their counterparts available in literature and it is found that the overall agreement is acceptable while the highly automated procedure for the finite element model generation developed in the present work made the analysis fairly easy and computationally highly efficient. Potential sources of errors in the current procedure have been identified and the measures for their mitigation recommended.
Originality/value
The present approach enables a more accurate determination of the physiological loads experienced by the orthopedic implants which can be of great value to implant designers and orthopedic surgeons.