Search results

1 – 10 of 155
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 26 November 2024

Xu Long, Xianyi Zhao, Kainan Chong, Yutai Su, Kim S. Siow, Zhi Wang, Fengrui Jia and Xin Wan

The purpose of this paper is to analyze and compare the mechanical properties of sintered nanosilver with different porosities at both the mesoscopic and macroscopic scales and to…

40

Abstract

Purpose

The purpose of this paper is to analyze and compare the mechanical properties of sintered nanosilver with different porosities at both the mesoscopic and macroscopic scales and to conduct a multiscale analysis of the porosity effect on the mechanical properties of sintered nanosilver.

Design/methodology/approach

This paper establishes a mesoscopic model for the uniaxial tension of sintered nanosilver and a macroscopic model for chips containing sintered silver layers. Using the finite element method, combined with crystal plasticity theory and unified creep plasticity theory, a multiscale analysis is conducted for the mechanical properties of sintered nanosilver. First, stress distribution characteristics under uniaxial tensile loading for different porosities in sintered nanosilver polycrystal models are analyzed at the mesoscopic scale. Second, at the macroscopic scale, the mechanical performance of sintered nanosilver layers with varying porosities in high-power chip models under cyclic loading is analyzed. Finally, the porosity influence on the damage evolution in sintered nanosilver is summarized, and simulations are conducted to explore the evolution of damage parameters in sintered nanosilver under different porosities.

Findings

In the mesoscopic model, the presence of mesoscale voids affects the stress distribution in sintered nanosilver subjected to tensile loading. Sintered nanosilver with lower porosity exhibits higher tensile strength. In the macroscopic model, sintered nanosilver layers with lower porosity correspond to a more uniform stress distribution, whereas higher porosity leads to faster accumulation of plastic strain in the sintered layer. During chip packaging processes, improving processes to reduce the porosity of sintered layers can delay the initiation of damage and the propagation of cracks in sintered nanosilver.

Practical implications

During chip packaging processes, improving processes to reduce the porosity of sintered layers can delay the initiation of damage and the propagation of cracks in sintered nanosilver.

Originality/value

This paper innovatively uses a mesoscopic crystal plasticity constitutive model and a macroscopic unified creep plasticity constitutive model to analyze the mechanical behavior of sintered nanosilver with different porosities. It comprehensively investigates and explains the influence of porosity on the mechanical performance of sintered nanosilver across multiple scales.

Details

Soldering & Surface Mount Technology, vol. 37 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 19 March 2019

Muhammad Izzuddin Abd Samad, Muhamad Ramdzan Buyong, Shyong Siow Kim and Burhanuddin Yeop Majlis

The purpose of this paper is to use a particle velocity measurement technique on a tapered microelectrode device via changes of an applied voltage, which is an enhancement of the…

165

Abstract

Purpose

The purpose of this paper is to use a particle velocity measurement technique on a tapered microelectrode device via changes of an applied voltage, which is an enhancement of the electric field density in influencing the dipole moment particles. Polystyrene microbeads (PM) have used to determine the responses of the dielectrophoresis (DEP) voltage based on the particle velocity technique.

Design/methodology/approach

Analytical modelling was used to simulate the particles’ polarization and their velocity based on the Clausius–Mossotti Factor (CMF) equation. The electric field intensity and DEP forces were simulated through the COMSOL numerical study of the variation of applied voltages such as 5 V p-p, 7 V p-p and 10 V p-p. Experimentally, the particle velocity on a tapered DEP response was quantified via the particle travelling distance over a time interval through a high-speed camera adapted to a high-precision non-contact depth measuring microscope.

Findings

The result of the particle velocity was found to increase, and the applied voltage has enhanced the particle trajectory on the tapered microelectrode, which confirmed its dependency on the electric field intensity at the top and bottom edges of the electrode. A higher magnitude of particle levitation was recorded with the highest particle velocity of 11.19 ± 4.43 µm/s at 1 MHz on 10 V p-p, compared to the lowest particle velocity with 0.62 ± 0.11 µm/s at 10 kHz on 7 V p-p.

Practical implications

This research can be applied for high throughout sensitivity and selectivity of particle manipulation in isolating and concentrating biological fluid for biomedical implications.

Originality/value

The comprehensive manipulation method based on the changes of the electrical potential of the tapered electrode was able to quantify the magnitude of the particle trajectory in accordance with the strong electric field density.

Details

Microelectronics International, vol. 36 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Access Restricted. View access options
Article
Publication date: 7 May 2024

Mohammad A. Gharaibeh and Jürgen Wilde

The purpose of this paper is to investigate the thermomechanical response of four well-known lead-free die attach materials: sintered silver, sintered nano-copper particles…

58

Abstract

Purpose

The purpose of this paper is to investigate the thermomechanical response of four well-known lead-free die attach materials: sintered silver, sintered nano-copper particles, gold-tin solders and silver-tin transient liquid phase (TLP) bonds.

Design/methodology/approach

This examination is conducted through finite element analysis. The mechanical properties of all die attach systems, including elastic and Anand creep parameters, are obtained from relevant literature and incorporated into the numerical analysis. Consequently, the bond stress-strain relationships, stored inelastic strain energies and equivalent plastic strains are thoroughly examined.

Findings

The results indicate that silver-tin TLP bonds are prone to exhibiting higher inelastic strain energy densities, while sintered silver and copper interconnects tend to possess higher levels of plastic strains and deformations. This suggests a higher susceptibility to damage in these metallic die attachments. On the other hand, the more expensive gold-based solders exhibit lower inelastic strain energy densities and plastic strains, implying an improved fatigue performance compared to other bonding configurations.

Originality/value

The utilization of different metallic material systems as die attachments in power electronics necessitates a comprehensive understanding of their thermomechanical behavior. Therefore, the results of the present paper can be useful in the die attach material selection in power electronics.

Details

International Journal of Structural Integrity, vol. 15 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Access Restricted. View access options
Article
Publication date: 1 February 2001

K.S. Siow, T.Y. Song and J.H. Qiu

This study showed the complex interactions of alloying elements and their prevailing microstructure on the pitting corrosion. This interaction was illustrated by electrochemical…

1508

Abstract

This study showed the complex interactions of alloying elements and their prevailing microstructure on the pitting corrosion. This interaction was illustrated by electrochemical tests of three grades of wrought duplex stainless steels. It was shown that SAF2507 had the highest pitting potential, followed by SAF2205 and SAF2304. However, SAF2205 had higher corrosion potential than SAF2507. SAF2205 and SAF2507 were immune to pitting, while SAF2304 was susceptible to pitting. It was also found in the experiment that the austenite‐ferrite interface was the most susceptible to corrosion, followed by the austenite and finally the ferrite phase.

Details

Anti-Corrosion Methods and Materials, vol. 48 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 9 May 2024

Mohammad A. Gharaibeh and Jürgen Wilde

In power electronics, there are various metallic material systems used as die attachments. The complete understanding of the thermomechanical behavior of such interconnections is…

99

Abstract

Purpose

In power electronics, there are various metallic material systems used as die attachments. The complete understanding of the thermomechanical behavior of such interconnections is very important. Therefore, this paper aims to examine the thermomechanical response of four famous die attach materials, including sintered silver, sintered nano-copper particles, gold-tin solders and silver-tin transient liquid phase (TLP) bonds, using nonlinear finite element analysis.

Design/methodology/approach

During the study, the mechanical properties of all die attach systems, including elastic and viscoplasticity parameters, are obtained from literature studies and hence incorporated into the numerical analysis. Subsequently, the bond stress–strain relationships, stored inelastic strain energies and equivalent plastic strains are thoroughly examined.

Findings

The results showed that the silver-tin TLP bonds are more likely to develop higher inelastic strain energy densities, while the sintered silver and copper interconnects would possess higher plastic strains and deformations. Suggesting higher damage to such metallic die attachments. The expensive gold-based solders have developed least inelastic strain energy densities and least plastic strains as well. Thus, they are expected to have improved fatigue performance compared to other bonding configurations.

Originality/value

This paper extensively investigates and compares the mechanical and thermal response of various metallic die attachments. In fact, there are no available research studies that discuss the behavior of such important die attachments of power electronics when exposed to mechanical and thermomechanical loads.

Details

Soldering & Surface Mount Technology, vol. 36 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 1 February 2018

Jan Felba

This paper aims to find proper technological parameters of low-temperature joining technique by silver sintering to eventually use this technique for reliable electronic packaging.

383

Abstract

Purpose

This paper aims to find proper technological parameters of low-temperature joining technique by silver sintering to eventually use this technique for reliable electronic packaging.

Design/methodology/approach

Based on the literature and author’s own experience, the factors influencing the nanosized Ag particle sintering results were identified, and their significance was assessed.

Findings

It has been shown that some important technological parameters clearly influence the quality of the joints, and their choice is unambiguous, but the meaning of some parameters is dependent on other factors (interactions), and they should be selected experimentally.

Originality/value

The value of this research is that the importance of all technological factors was analyzed, which makes it easy to choose the technological procedures in the electronic packaging.

Details

Circuit World, vol. 44 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Available. Open Access. Open Access
Article
Publication date: 28 April 2022

Krzysztof Jakub Stojek, Jan Felba, Damian Nowak, Karol Malecha, Szymon Kaczmarek and Patryk Tomasz Tomasz Andrzejak

This paper aims to perform thermal and mechanical characterization for silver-based sintered thermal joints. Layer quality affects thermal and mechanical performance, and it is…

621

Abstract

Purpose

This paper aims to perform thermal and mechanical characterization for silver-based sintered thermal joints. Layer quality affects thermal and mechanical performance, and it is important to achieve information about how materials and process parameters influence them.

Design/methodology/approach

Thermal investigation of the thermal joints analysis method was focused on determination of thermal resistance, where temperature measurements were performed using infrared camera. They were performed in two modes: steady-state analysis and dynamic analysis. Mechanical analysis based on measurements of mechanical shear force. Additional characterizations based on X-ray image analysis (image thresholding), optical microscope of polished cross-section and scanning electron microscope image analysis were proposed.

Findings

Sample surface modification affects thermal resistance. Silver metallization exhibits the lowest thermal resistance and the highest mechanical strength compared to the pure Si surface. The type of dynamic analysis affects the results of the thermal resistance.

Originality/value

Investigation of the layer quality influence on mechanical and thermal performance provided information about different joint types.

Details

Soldering & Surface Mount Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 27 November 2023

Meng Jiang, Yang Liu, Ke Li, Zhen Pan, Quan Sun, Yongzhe Xu and Yuan Tao

The purpose of this paper is to study the reliability of sintered nano-silver joints on bare copper substrates during high-temperature storage (HTS).

136

Abstract

Purpose

The purpose of this paper is to study the reliability of sintered nano-silver joints on bare copper substrates during high-temperature storage (HTS).

Design/methodology/approach

In this study, HTS at 250 °C was carried out to investigate the reliability of nano-silver sintered joints. Combining the evolution of the microstructure and shear strength of the joints, the degradation mechanisms of joints performance were characterized.

Findings

The results indicated that the degradation of the shear properties of sintered nano-silver joints on copper substrates was attributed to copper oxidation at the silver/copper interface and interdiffusion of interfacial elements. The joints decreased by approximately 57.4% compared to the original joints after aging for 500 h. In addition, severe coarsening of the silver structure was also an important cause for joints failure during HTS.

Originality/value

This paper provides a comparison of quantitative and mechanistic evaluation of sintered silver joints on bare copper substrates during HTS, which is of great importance in promoting the development of sintered silver technology.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 12 April 2024

Yanwei Dai, Libo Zhao, Fei Qin and Si Chen

This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.

118

Abstract

Purpose

This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.

Design/methodology/approach

Through microstructure observations and characterization, the influences of sintering process on the microstructure evolutions of sintered nano-silver were presented. And, the indentation load, indentation displacement curves of sintered silver under various sintering processes were measured by using nano-indentation test. Based on the nano-indentation test, a reverse analysis of the finite element calculation was used to determine the yielding stress and hardening exponent.

Findings

The porosity decreases with the increase of the sintering temperature, while the average particle size of sintered nano-silver increases with the increase of sintering temperature and sintering time. In addition, the porosity reduced from 34.88%, 30.52%, to 25.04% if the ramp rate was decreased from 25°C/min, 15°C/min, to 5°C/min, respectively. The particle size appears more frequently within 1 µm and 2 µm under the lower ramp rate. With reverse analysis, the strain hardening exponent gradually heightened with the increase of temperature, while the yielding stress value decreased significantly with the increase of temperature. When the sintering time increased, the strain hardening exponent increased slightly.

Practical implications

The mechanical properties of sintered nano-silver under different sintering processes are clearly understood.

Originality/value

This paper could provide a novel perspective on understanding the sintering process effects on the mechanical properties of sintered nano-silver.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 18 February 2019

Yang Liu, Hao Zhang, Lingen Wang, Xuejun Fan, Guoqi Zhang and F. Sun

Crack and stress distribution on dies are key issues for the pressure-assisted sintering bonding of power modules. The purpose of this research is to build a relationship among…

197

Abstract

Purpose

Crack and stress distribution on dies are key issues for the pressure-assisted sintering bonding of power modules. The purpose of this research is to build a relationship among stress distributions, sintering sequences and sintering pressures during the sintering processes.

Design/methodology/approach

Three sintering sequences, S(a), S(b) and S(c), have been designed for the double-side assembly of power module in this paper. Experiments and finite element method (FEM) analysis are conducted to investigate the crack and stress distribution.

Findings

The sintering sequence had significant effects on the crack generation in the chips during the sintering process under 30-MPa pressure. The simulation results revealed that the module sintered by S(a) showed lower chip stress than those by the other two sintering sequences under 30 MPa. In contrast, the chip stress is the highest when the sintering sequence follows S(b). The simulation results explained the crack generation and prolongation in the experiments. S(a) was recommended as the best sintering sequence because of the lowest chip stress and highest yield rate.

Originality/value

This study investigated the stress distributions of the double-side sintered power modules under different sintering pressures. Based on the results of experiments and FEM analysis, the best sintering sequence design is provided under various sintering pressures.

Details

Soldering & Surface Mount Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 155
Per page
102050