Search results

1 – 10 of 650
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 26 January 2022

K. Venkataravana Nayak, J.S. Arunalatha, G.U. Vasanthakumar and K.R. Venugopal

The analysis of multimedia content is being applied in various real-time computer vision applications. In multimedia content, digital images constitute a significant part. The…

180

Abstract

Purpose

The analysis of multimedia content is being applied in various real-time computer vision applications. In multimedia content, digital images constitute a significant part. The representation of digital images interpreted by humans is subjective in nature and complex. Hence, searching for relevant images from the archives is difficult. Thus, electronic image analysis strategies have become effective tools in the process of image interpretation.

Design/methodology/approach

The traditional approach used is text-based, i.e. searching images using textual annotations. It consumes time in the manual process of annotating images and is difficult to reduce the dependency in textual annotations if the archive consists of large number of samples. Therefore, content-based image retrieval (CBIR) is adopted in which the high-level visuals of images are represented in terms of feature vectors, which contain numerical values. It is a commonly used approach to understand the content of query images in retrieving relevant images. Still, the performance is less than optimal due to the presence of semantic gap among the image content representation and human visual understanding perspective because of the image content photometric, geometric variations and occlusions in search environments.

Findings

The authors proposed an image retrieval framework to generate semantic response through the feature extraction with convolution network and optimization of extracted features using adaptive moment estimation algorithm towards enhancing the retrieval performance.

Originality/value

The proposed framework is tested on Corel-1k and ImageNet datasets resulted in an accuracy of 98 and 96%, respectively, compared to the state-of-the-art approaches.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Access Restricted. View access options
Book part
Publication date: 14 March 2024

Paulo Botelho Pires and José Duarte Santos

Buying online has become a widespread and common activity for consumers, and, for many organizations, e-commerce has become a very profitable alternative to sell their products…

Abstract

Buying online has become a widespread and common activity for consumers, and, for many organizations, e-commerce has become a very profitable alternative to sell their products and services, also allowing them to leverage their strategy in new geographical markets immediately. Although the literature on the subject is comprehensive, there is a gap in identifying the holistic constructs that are the determinants of consumers' choice of an online store. This research resorts to an exploratory study, based on a nonsystematic literature review, seeking to identify these constructs. The results obtained allowed us to identify the following constructs: consumer behavior, customer experience, web content, catalog, terms and conditions, customer support, perceived value, trust, security and privacy, satisfaction, and loyalty. Customer experience, satisfaction, and loyalty constructs stand out from a strategic perspective.

Details

The Impact of Digitalization on Current Marketing Strategies
Type: Book
ISBN: 978-1-83753-686-3

Keywords

Access Restricted. View access options
Article
Publication date: 19 September 2019

Chengzhi Zhang, Tiantian Tong and Yi Bu

Websites have their own features in aspect preference (e.g. the relative importance platforms place on product aspects in product evaluation). The purpose of this paper is to…

584

Abstract

Purpose

Websites have their own features in aspect preference (e.g. the relative importance platforms place on product aspects in product evaluation). The purpose of this paper is to capture characteristics of different book reviews on aspect preferences by opinion mining techniques.

Design/methodology/approach

The authors employ two indicators for identifying aspect preferences, and propose a method for quantifying overall differences of reviews on aspect preferences through three dimensions: aspect awareness, aspect satisfaction and comprehensive value.

Findings

The results show that book reviews on e-commerce websites contain information about external aspects of a book (e.g. hardcover), while those on social network websites pay more attention to content-related aspects of the book (e.g. stories). These results indicate that aspect preferences of reviews vary from platforms and make it hard to evaluate book comprehensively based on single-source data. Online book reviews from a wide range of sources can assess book impact from multiple perspectives and dimensions.

Practical implications

In order to illustrate the value of the authors’ method, the authors show book impact assessment based on multi-source data as an application of these difference analyses. Furthermore, the authors present an example of a book promotion to provide customized marketing services for different user clusters.

Originality/value

This study investigates the influence of different data sources on book evaluation from the content of book reviews. The authors also showcase potential applications of these analyses in book impact assessment.

Details

Online Information Review, vol. 43 no. 7
Type: Research Article
ISSN: 1468-4527

Keywords

Available. Open Access. Open Access
Article
Publication date: 31 July 2020

Omar Alqaryouti, Nur Siyam, Azza Abdel Monem and Khaled Shaalan

Digital resources such as smart applications reviews and online feedback information are important sources to seek customers’ feedback and input. This paper aims to help…

11267

Abstract

Digital resources such as smart applications reviews and online feedback information are important sources to seek customers’ feedback and input. This paper aims to help government entities gain insights on the needs and expectations of their customers. Towards this end, we propose an aspect-based sentiment analysis hybrid approach that integrates domain lexicons and rules to analyse the entities smart apps reviews. The proposed model aims to extract the important aspects from the reviews and classify the corresponding sentiments. This approach adopts language processing techniques, rules, and lexicons to address several sentiment analysis challenges, and produce summarized results. According to the reported results, the aspect extraction accuracy improves significantly when the implicit aspects are considered. Also, the integrated classification model outperforms the lexicon-based baseline and the other rules combinations by 5% in terms of Accuracy on average. Also, when using the same dataset, the proposed approach outperforms machine learning approaches that uses support vector machine (SVM). However, using these lexicons and rules as input features to the SVM model has achieved higher accuracy than other SVM models.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Access Restricted. View access options
Article
Publication date: 19 February 2018

Qiujun Lan, Haojie Ma and Gang Li

Sentiment identification of Chinese text faces many challenges, such as requiring complex preprocessing steps, preparing various word dictionaries carefully and dealing with a lot…

214

Abstract

Purpose

Sentiment identification of Chinese text faces many challenges, such as requiring complex preprocessing steps, preparing various word dictionaries carefully and dealing with a lot of informal expressions, which lead to high computational complexity.

Design/methodology/approach

A method based on Chinese characters instead of words is proposed. This method represents the text into a fixed length vector and introduces the chi-square statistic to measure the categorical sentiment score of a Chinese character. Based on these, the sentiment identification could be accomplished through four main steps.

Findings

Experiments on corpus with various themes indicate that the performance of proposed method is a little bit worse than existing Chinese words-based methods on most texts, but with improved performance on short and informal texts. Especially, the computation complexity of the proposed method is far better than words-based methods.

Originality/value

The proposed method exploits the property of Chinese characters being a linguistic unit with semantic information. Contrasting to word-based methods, the computational efficiency of this method is significantly improved at slight loss of accuracy. It is more sententious and cuts off the problems resulted from preparing predefined dictionaries and various data preprocessing.

Details

Information Discovery and Delivery, vol. 46 no. 1
Type: Research Article
ISSN: 2398-6247

Keywords

Access Restricted. View access options
Article
Publication date: 10 August 2021

Deepa S.N.

Limitations encountered with the models developed in the previous studies had occurrences of global minima; due to which this study developed a new intelligent ubiquitous…

350

Abstract

Purpose

Limitations encountered with the models developed in the previous studies had occurrences of global minima; due to which this study developed a new intelligent ubiquitous computational model that learns with gradient descent learning rule and operates with auto-encoders and decoders to attain better energy optimization. Ubiquitous machine learning computational model process performs training in a better way than regular supervised learning or unsupervised learning computational models with deep learning techniques, resulting in better learning and optimization for the considered problem domain of cloud-based internet-of-things (IOTs). This study aims to improve the network quality and improve the data accuracy rate during the network transmission process using the developed ubiquitous deep learning computational model.

Design/methodology/approach

In this research study, a novel intelligent ubiquitous machine learning computational model is designed and modelled to maintain the optimal energy level of cloud IOTs in sensor network domains. A new intelligent ubiquitous computational model that learns with gradient descent learning rule and operates with auto-encoders and decoders to attain better energy optimization is developed. A new unified deterministic sine-cosine algorithm has been developed in this study for parameter optimization of weight factors in the ubiquitous machine learning model.

Findings

The newly developed ubiquitous model is used for finding network energy and performing its optimization in the considered sensor network model. At the time of progressive simulation, residual energy, network overhead, end-to-end delay, network lifetime and a number of live nodes are evaluated. It is elucidated from the results attained, that the ubiquitous deep learning model resulted in better metrics based on its appropriate cluster selection and minimized route selection mechanism.

Research limitations/implications

In this research study, a novel ubiquitous computing model derived from a new optimization algorithm called a unified deterministic sine-cosine algorithm and deep learning technique was derived and applied for maintaining the optimal energy level of cloud IOTs in sensor networks. The deterministic levy flight concept is applied for developing the new optimization technique and this tends to determine the parametric weight values for the deep learning model. The ubiquitous deep learning model is designed with auto-encoders and decoders and their corresponding layers weights are determined for optimal values with the optimization algorithm. The modelled ubiquitous deep learning approach was applied in this study to determine the network energy consumption rate and thereby optimize the energy level by increasing the lifetime of the sensor network model considered. For all the considered network metrics, the ubiquitous computing model has proved to be effective and versatile than previous approaches from early research studies.

Practical implications

The developed ubiquitous computing model with deep learning techniques can be applied for any type of cloud-assisted IOTs in respect of wireless sensor networks, ad hoc networks, radio access technology networks, heterogeneous networks, etc. Practically, the developed model facilitates computing the optimal energy level of the cloud IOTs for any considered network models and this helps in maintaining a better network lifetime and reducing the end-to-end delay of the networks.

Social implications

The social implication of the proposed research study is that it helps in reducing energy consumption and increases the network lifetime of the cloud IOT based sensor network models. This approach helps the people in large to have a better transmission rate with minimized energy consumption and also reduces the delay in transmission.

Originality/value

In this research study, the network optimization of cloud-assisted IOTs of sensor network models is modelled and analysed using machine learning models as a kind of ubiquitous computing system. Ubiquitous computing models with machine learning techniques develop intelligent systems and enhances the users to make better and faster decisions. In the communication domain, the use of predictive and optimization models created with machine learning accelerates new ways to determine solutions to problems. Considering the importance of learning techniques, the ubiquitous computing model is designed based on a deep learning strategy and the learning mechanism adapts itself to attain a better network optimization model.

Details

International Journal of Pervasive Computing and Communications, vol. 18 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Access Restricted. View access options
Article
Publication date: 25 October 2018

Shrawan Kumar Trivedi, Shubhamoy Dey and Anil Kumar

Sentiment analysis and opinion mining are emerging areas of research for analyzing Web data and capturing users’ sentiments. This research aims to present sentiment analysis of an…

374

Abstract

Purpose

Sentiment analysis and opinion mining are emerging areas of research for analyzing Web data and capturing users’ sentiments. This research aims to present sentiment analysis of an Indian movie review corpus using natural language processing and various machine learning classifiers.

Design/methodology/approach

In this paper, a comparative study between three machine learning classifiers (Bayesian, naïve Bayesian and support vector machine [SVM]) was performed. All the classifiers were trained on the words/features of the corpus extracted, using five different feature selection algorithms (Chi-square, info-gain, gain ratio, one-R and relief-F [RF] attributes), and a comparative study was performed between them. The classifiers and feature selection approaches were evaluated using different metrics (F-value, false-positive [FP] rate and training time).

Findings

The results of this study show that, for the maximum number of features, the RF feature selection approach was found to be the best, with better F-values, a low FP rate and less time needed to train the classifiers, whereas for the least number of features, one-R was better than RF. When the evaluation was performed for machine learning classifiers, SVM was found to be superior, although the Bayesian classifier was comparable with SVM.

Originality/value

This is a novel research where Indian review data were collected and then a classification model for sentiment polarity (positive/negative) was constructed.

Details

The Electronic Library, vol. 36 no. 4
Type: Research Article
ISSN: 0264-0473

Keywords

Access Restricted. View access options
Article
Publication date: 30 October 2018

Shrawan Kumar Trivedi and Prabin Kumar Panigrahi

Email spam classification is now becoming a challenging area in the domain of text classification. Precise and robust classifiers are not only judged by classification accuracy…

492

Abstract

Purpose

Email spam classification is now becoming a challenging area in the domain of text classification. Precise and robust classifiers are not only judged by classification accuracy but also by sensitivity (correctly classified legitimate emails) and specificity (correctly classified unsolicited emails) towards the accurate classification, captured by both false positive and false negative rates. This paper aims to present a comparative study between various decision tree classifiers (such as AD tree, decision stump and REP tree) with/without different boosting algorithms (bagging, boosting with re-sample and AdaBoost).

Design/methodology/approach

Artificial intelligence and text mining approaches have been incorporated in this study. Each decision tree classifier in this study is tested on informative words/features selected from the two publically available data sets (SpamAssassin and LingSpam) using a greedy step-wise feature search method.

Findings

Outcomes of this study show that without boosting, the REP tree provides high performance accuracy with the AD tree ranking as the second-best performer. Decision stump is found to be the under-performing classifier of this study. However, with boosting, the combination of REP tree and AdaBoost compares favourably with other classification models. If the metrics false positive rate and performance accuracy are taken together, AD tree and REP tree with AdaBoost were both found to carry out an effective classification task. Greedy stepwise has proven its worth in this study by selecting a subset of valuable features to identify the correct class of emails.

Research limitations/implications

This research is focussed on the classification of those email spams that are written in the English language only. The proposed models work with content (words/features) of email data that is mostly found in the body of the mail. Image spam has not been included in this study. Other messages such as short message service or multi-media messaging service were not included in this study.

Practical implications

In this research, a boosted decision tree approach has been proposed and used to classify email spam and ham files; this is found to be a highly effective approach in comparison with other state-of-the-art modes used in other studies. This classifier may be tested for different applications and may provide new insights for developers and researchers.

Originality/value

A comparison of decision tree classifiers with/without ensemble has been presented for spam classification.

Details

Journal of Systems and Information Technology, vol. 20 no. 3
Type: Research Article
ISSN: 1328-7265

Keywords

Access Restricted. View access options
Article
Publication date: 29 October 2018

Shrawan Kumar Trivedi and Shubhamoy Dey

To be sustainable and competitive in the current business environment, it is useful to understand users’ sentiment towards products and services. This critical task can be…

318

Abstract

Purpose

To be sustainable and competitive in the current business environment, it is useful to understand users’ sentiment towards products and services. This critical task can be achieved via natural language processing and machine learning classifiers. This paper aims to propose a novel probabilistic committee selection classifier (PCC) to analyse and classify the sentiment polarities of movie reviews.

Design/methodology/approach

An Indian movie review corpus is assembled for this study. Another publicly available movie review polarity corpus is also involved with regard to validating the results. The greedy stepwise search method is used to extract the features/words of the reviews. The performance of the proposed classifier is measured using different metrics, such as F-measure, false positive rate, receiver operating characteristic (ROC) curve and training time. Further, the proposed classifier is compared with other popular machine-learning classifiers, such as Bayesian, Naïve Bayes, Decision Tree (J48), Support Vector Machine and Random Forest.

Findings

The results of this study show that the proposed classifier is good at predicting the positive or negative polarity of movie reviews. Its performance accuracy and the value of the ROC curve of the PCC is found to be the most suitable of all other classifiers tested in this study. This classifier is also found to be efficient at identifying positive sentiments of reviews, where it gives low false positive rates for both the Indian Movie Review and Review Polarity corpora used in this study. The training time of the proposed classifier is found to be slightly higher than that of Bayesian, Naïve Bayes and J48.

Research limitations/implications

Only movie review sentiments written in English are considered. In addition, the proposed committee selection classifier is prepared only using the committee of probabilistic classifiers; however, other classifier committees can also be built, tested and compared with the present experiment scenario.

Practical implications

In this paper, a novel probabilistic approach is proposed and used for classifying movie reviews, and is found to be highly effective in comparison with other state-of-the-art classifiers. This classifier may be tested for different applications and may provide new insights for developers and researchers.

Social implications

The proposed PCC may be used to classify different product reviews, and hence may be beneficial to organizations to justify users’ reviews about specific products or services. By using authentic positive and negative sentiments of users, the credibility of the specific product, service or event may be enhanced. PCC may also be applied to other applications, such as spam detection, blog mining, news mining and various other data-mining applications.

Originality/value

The constructed PCC is novel and was tested on Indian movie review data.

Access Restricted. View access options
Article
Publication date: 2 December 2019

Fuli Zhou, Ming K. Lim, Yandong He and Saurabh Pratap

The increasingly booming e-commerce development has stimulated vehicle consumers to express individual reviews through online forum. The purpose of this paper is to probe into the…

714

Abstract

Purpose

The increasingly booming e-commerce development has stimulated vehicle consumers to express individual reviews through online forum. The purpose of this paper is to probe into the vehicle consumer consumption behavior and make recommendations for potential consumers from textual comments viewpoint.

Design/methodology/approach

A big data analytic-based approach is designed to discover vehicle consumer consumption behavior from online perspective. To reduce subjectivity of expert-based approaches, a parallel Naïve Bayes approach is designed to analyze the sentiment analysis, and the Saaty scale-based (SSC) scoring rule is employed to obtain specific sentimental value of attribute class, contributing to the multi-grade sentiment classification. To achieve the intelligent recommendation for potential vehicle customers, a novel SSC-VIKOR approach is developed to prioritize vehicle brand candidates from a big data analytical viewpoint.

Findings

The big data analytics argue that “cost-effectiveness” characteristic is the most important factor that vehicle consumers care, and the data mining results enable automakers to better understand consumer consumption behavior.

Research limitations/implications

The case study illustrates the effectiveness of the integrated method, contributing to much more precise operations management on marketing strategy, quality improvement and intelligent recommendation.

Originality/value

Researches of consumer consumption behavior are usually based on survey-based methods, and mostly previous studies about comments analysis focus on binary analysis. The hybrid SSC-VIKOR approach is developed to fill the gap from the big data perspective.

Details

Industrial Management & Data Systems, vol. 120 no. 1
Type: Research Article
ISSN: 0263-5577

Keywords

1 – 10 of 650
Per page
102050