Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 28 September 2012

J. Suwanprateeb, F. Thammarakcharoen, K. Wasoontararat and W. Suvannapruk

The purpose of this paper is to study the influence of changing printing parameters (powder layer thickness and binder saturation) in a three dimensional printing machine (3DP) on…

1378

Abstract

Purpose

The purpose of this paper is to study the influence of changing printing parameters (powder layer thickness and binder saturation) in a three dimensional printing machine (3DP) on the transformation of 3DP printed plaster of paris to hydroxyapatite by low temperature phosphorization.

Design/methodology/approach

Plaster of paris‐based powder mixture was used to print specimens using different powder layer thickness (0.080, 0.10 and 0.20 mm) and saturation ratio (1 and 2). Subsequently, density, microstructure, mechanical properties, transformation rate and phase composition were analyzed to compare the influence of such printing parameters on properties.

Findings

It was found that printing parameters strongly affect the transformation efficiency and properties of the samples. The sample printed at layer thickness of 0.10 mm and saturation ratio of 1 yielded the highest transformation rate, density and greatest flexural modulus and strength after conversion. This was related to the sufficiently low density structure with good mechanical properties of the as‐fabricated 3DP sample which was suitable for the low temperature phosphorization process. Hydroxyapatite and monetite were found to be the main phases after conversion and the content of each phase depended on the conversion time and on also the printing parameters.

Research limitations/implications

The optimal printing parameters were true for the materials used in this study. In the case of using other materials formulation, the optimal printing parameters might be different from these values.

Practical implications

The results presented here can be used as a guideline for selecting printing parameters in 3DP machine for achieving properties as desired for specific applications or post‐processing techniques.

Originality/value

The paper demonstrates the printing parameters that were needed to be considered for efficient phase transformation and high mechanical properties.

Details

Rapid Prototyping Journal, vol. 18 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 18 April 2016

Han Chen and Yaoyao Fiona Zhao

Binder jetting (BJ) process is an additive manufacturing (AM) process in which powder materials are selectively joined by binder materials. Products can be manufactured…

3670

Abstract

Purpose

Binder jetting (BJ) process is an additive manufacturing (AM) process in which powder materials are selectively joined by binder materials. Products can be manufactured layer-by-layer directly from three-dimensional model data. The quality properties of the products fabricated by the BJ AM process are significantly affected by the process parameters. To improve the product quality, the optimal process parameters need to be identified and controlled. This research works with the 420 stainless steel powder material.

Design/methodology/approach

This study focuses on four key printing parameters and two end-product quality properties. Sixteen groups of orthogonal experiment designed by the Taguchi method are conducted, and then the results are converted to signal-to-noise ratios and analyzed by analysis of variance.

Findings

Five sets of optimal parameters are concluded and verified by four group confirmation tests. Finally, by taking the optimal parameters, the end-product quality properties are significantly improved.

Originality/value

These optimal parameters can be used as a guideline for selecting proper printing parameters in BJ to achieve the desired properties and help to improve the entire BJ process ability.

Access Restricted. View access options
Article
Publication date: 30 September 2019

Pataravit Rukskul, Waraporn Suvannapruk and Jintamai Suwanprateeb

The purpose of this study is to evaluate the intra- and post-operative performance and safety of direct three dimensional printing (3DP) porous polyethylene implants in cranial…

149

Abstract

Purpose

The purpose of this study is to evaluate the intra- and post-operative performance and safety of direct three dimensional printing (3DP) porous polyethylene implants in cranial reconstruction.

Design/methodology/approach

Prefabricated porous polyethylene implants were prepared by direct 3DP, and cranioplasty implantation was performed. Postoperative aesthetics, patient satisfaction, firmness of the implant, reactions to the implant and 3D computed tomography (CT) scanning were assessed after 2, 6, 12 and 24 months postoperatively.

Findings

No complications after surgery were encountered. Excellent aesthetic results were obtained in all cases, and all the patients were satisfied with the reconstruction outcome. Bone density structure was found to ingrowth into these direct 3DP porous polyethylene implants and the content increased with increasing follow-up times.

Research limitations/implications

This study was a pilot study conducted in a single group and evaluated in a short-term period. The bone formation and ingrowth were indirectly assessed by 3D CT evaluation.

Originality/value

This work reported the use and evaluation of direct 3DP porous polyethylene in middle- to large-sized cranial reconstructions. It evidently showed the bonding of implants to surrounding tissues which would result in the long-term stability and infection resistance of the implant.

Details

Rapid Prototyping Journal, vol. 26 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 28 January 2021

Yashwant Kumar Modi and Kiran Kumar Sahu

This study aims to optimize the process parameters of ZPrinter® 450 for measured porosity (MP) and compressive strength (CS) of calcium sulfate-based porous bone scaffold using…

205

Abstract

Purpose

This study aims to optimize the process parameters of ZPrinter® 450 for measured porosity (MP) and compressive strength (CS) of calcium sulfate-based porous bone scaffold using Taguchi approach.

Design/methodology/approach

Initially, a porous scaffold with smallest pore size that can be de-powdered completely is identified through a pilot study. Five printing parameters, namely, layer thickness (LT), build orientation (BO), build position (BP), delay time (DT) and binder saturation (BS), each at three levels have been optimized for MP and CS of the fabricated scaffolds using L27 orthogonal array (OA), signal-to-noise ratio and analysis of variance (ANOVA).

Findings

The scaffolds with 600 µm pores could be de-powdered completely. Optimum levels of parameters are LT2, BO1, BP2, DT1 and BS1 for MP and LT1, BO1, BP2, DT1 and BS2 for CS. The ANOVA reveals that the BS (49.12%) is the most and BP (8.34%) is the least significant parameter for MP. LT (50.84%) is the most, BO (33.79%) is second most and DT (2.59%) is the least significant parameter for CS. Taguchi confirmation test and linear regression models indicate a good agreement between predicted and experimental values of MP and CS. The experimental values of MP and CS at the optimum levels of parameters are found 38.12% and 1.29 MPa, respectively.

Originality/value

The paper presents effect of process parameters of ZPrinter® 450 on MP and CS of calcium sulfate-based porous scaffolds. Results may be used as guideline for powder bed binder jetting three-dimensional printing of ceramic scaffolds.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 4 of 4
Per page
102050