Search results

1 – 10 of 25
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 18 January 2022

Valentin Hanser, Markus Schöbinger and Karl Hollaus

This work introduces an efficient and accurate technique to solve the eddy current problem in laminated iron cores considering vector hysteresis.

652

Abstract

Purpose

This work introduces an efficient and accurate technique to solve the eddy current problem in laminated iron cores considering vector hysteresis.

Design/methodology/approach

The mixed multiscale finite element method based on the based on the T,Φ-Φ formulation, with the current vector potential T and the magnetic scalar potential Φ allows the laminated core to be modelled as a single homogeneous block. This means that the individual sheets do not have to be resolved, which saves a lot of computing time and reduces the demands on the computer system enormously.

Findings

As a representative numerical example, a single-phase transformer with 4, 20 and 184 sheets is simulated with great success. The eddy current losses of the simulation using the standard finite element method and the simulation using the mixed multiscale finite element method agree very well and the required simulation time is tremendously reduced.

Originality/value

The vector Preisach model is used to account for vector hysteresis and is integrated into the mixed multiscale finite element method for the first time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 1 June 2005

K. Hollaus, B. Wagner and O. Bíró

The aim of the present work is to find an efficient solution concerning the computational effort of quasi‐static electric field (QSEF) problems involving anisotropic conductivity…

568

Abstract

Purpose

The aim of the present work is to find an efficient solution concerning the computational effort of quasi‐static electric field (QSEF) problems involving anisotropic conductivity and permittivity in the frequency domain.

Design/methodology/approach

Numerical simulations are carried out with tetrahedral nodal finite elements of first‐ and second‐order and with Withney elements. The solution of the boundary value problem with the aid of the electric scalar potential approximated by nodal finite elements is compared with those by the electric current vector potential represented by edge finite elements.

Findings

The simulation with an electric current vector potential approximated by the edge elements of first‐order prevail over that by the electric scalar potential approximated by nodal elements of second‐order concerning the memory requirements and the computation time at comparable accuracy.

Originality/value

The application of edge finite elements to solve QSEF problems considering an anisotropic complex conductivity in 3D.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 1 June 2005

B. Wagner, K. Hollaus and Ch. Magele

The aim of the work is to reconstruct the anisotropic complex conductivity distribution with the common Gauss‐Newton algorithm.

267

Abstract

Purpose

The aim of the work is to reconstruct the anisotropic complex conductivity distribution with the common Gauss‐Newton algorithm.

Design/methodology/approach

A cubic region with anisotropic material properties is enclosed by a larger cube with isotropic material properties. Numerical simulations are done with tetrahedral nodal finite elements of second‐order.

Findings

It can be shown that it is possible to reconstruct anisotropic complex conductivity distribution if the starting values are chosen sufficiently close to the true values of the complex conductivity.

Originality/value

In this paper, the anisotropic electric conductivity and the anisotropic permittivity are reconstructed in 3D.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Available. Open Access. Open Access
Article
Publication date: 8 August 2019

Karl Hollaus

The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of great interest in the design of electrical devices. Modeling each laminate by…

1149

Abstract

Purpose

The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of great interest in the design of electrical devices. Modeling each laminate by finite elements leads to extremely large nonlinear systems of equations impossible to solve with present computer resources reasonably. The purpose of this study is to show that the multiscale finite element method (MSFEM) overcomes this difficulty.

Design/methodology/approach

A new MSFEM approach for eddy currents of laminated nonlinear iron cores in three dimensions based on the magnetic vector potential is presented. How to construct the MSFEM approach in principal is shown. The MSFEM with the Biot–Savart field in the frequency domain, a higher-order approach, the time stepping method and with the harmonic balance method are introduced and studied.

Findings

Various simulations demonstrate the feasibility, efficiency and versatility of the new MSFEM.

Originality/value

The novel MSFEM solves true three-dimensional eddy current problems in laminated iron cores taking into account of the edge effect.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Available. Open Access. Open Access
Article
Publication date: 16 February 2022

Karl Hollaus, Susanne Bauer, Michael Leumüller and Christian Türk

Cables are ubiquitous in electronic-based systems. Electromagnetic emission of cables and crosstalk between wires is an important issue in electromagnetic compatibility and is to…

1176

Abstract

Purpose

Cables are ubiquitous in electronic-based systems. Electromagnetic emission of cables and crosstalk between wires is an important issue in electromagnetic compatibility and is to be minimized in the design phase. To facilitate the design, models of different complexity and accuracy, for instance, circuit models or finite element (FE) simulations, are used. The purpose of this study is to compare transmission line parameters obtained by measurements and simulations.

Design/methodology/approach

Transmission line parameters were determined by means of measurements in the frequency and time domain and by FE simulations in the frequency domain and compared. Finally, a Spice simulation with lumped elements was performed.

Findings

The determination of the effective permittivity of insulated wires seems to be a key issue in comparing measurements and simulations.

Originality/value

A space decomposition technique for a guided wave on an infinite configuration with constant cross-section has been introduced, where an analytic representation in the direction of propagation is used, and the transversal fields are approximated by FEs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 7 September 2015

Karl Hollaus and Joachim Schöberl

– The purpose of this paper is an accurate computation of eddy currents in laminated media with minimal computer resources.

231

Abstract

Purpose

The purpose of this paper is an accurate computation of eddy currents in laminated media with minimal computer resources.

Design/methodology/approach

Modeling each laminate of the laminated core of electrical devices requires prohibitively many finite elements (FEs). To overcome this restriction a higher order multi-scale FE method with the magnetic vector potential

A

has been developed to cope with 3D problems considering edge effects.

Findings

The multi-scale FE approach facilitates an accurate simulation of the eddy current losses with minimal computer resources. Numerical simulations demonstrate a remarkable accuracy and low computational costs. The effect of regularization on the results is shown.

Practical implications

The eddy current losses are of great interest in the design of electrical devices with laminated cores.

Originality/value

The multi-scale FE approach takes also into account of the edge effects in 3D.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Available. Open Access. Open Access
Article
Publication date: 16 March 2022

Michael Leumüller, Karl Hollaus and Joachim Schöberl

This paper aims to consider a multiscale electromagnetic wave problem for a housing with a ventilation grill. Using the standard finite element method to discretise the apertures…

430

Abstract

Purpose

This paper aims to consider a multiscale electromagnetic wave problem for a housing with a ventilation grill. Using the standard finite element method to discretise the apertures leads to an unduly large number of unknowns. An efficient approach to simulate the multiple scales is introduced. The aim is to significantly reduce the computational costs.

Design/methodology/approach

A domain decomposition technique with upscaling is applied to cope with the different scales. The idea is to split the domain of computation into an exterior domain and multiple non-overlapping sub-domains. Each sub-domain represents a single aperture and uses the same finite element mesh. The identical mesh of the sub-domains is efficiently exploited by the hybrid discontinuous Galerkin method and a Schur complement which facilitates the transition from fine meshes in the sub-domains to a coarse mesh in the exterior domain. A coarse skeleton grid is used on the interface between the exterior domain and the individual sub-domains to avoid large dense blocks in the finite element discretisation matrix.

Findings

Applying a Schur complement to the identical discretisation of the sub-domains leads to a method that scales very well with respect to the number of apertures.

Originality/value

The error compared to the standard finite element method is negligible and the computational costs are significantly reduced.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 10 July 2009

Karl Hollaus, Oszkár Bíró, Gernot Matzenauer, Christian Stockreiter, Bernhard Weiß, Peter Caldera and Gerhard Paoli

The purpose of this paper is to study the extraction of scattering parameters (SPs) from simple structures on a printed circuit board (PCB) by the finite difference time domain…

274

Abstract

Purpose

The purpose of this paper is to study the extraction of scattering parameters (SPs) from simple structures on a printed circuit board (PCB) by the finite difference time domain (FDTD) method with the aid of a surface impedance boundary condition (SIBC).

Design/methodology/approach

The incorporation of SIBC into the FDTD method is described for the general case. The excitation of a field problem by a field pattern and the transition from the field solution to a circuit representation by SPs is discussed.

Findings

SPs obtained by FDTD with SIBC are validated with semi‐analytic solutions and compared with results obtained by different numerical methods. Results of a microstrip with a discontinuity considering losses are presented demonstrating the capability of the present method.

Originality/value

The comparison of numerical results obtained by different methods demonstrates the capability of the present method to extract SPs from PCBs very efficiently.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 4 September 2017

Markus Schöbinger, Karl Hollaus and Joachim Schöberl

This paper aims to improve the efficiency of a numerical method to treat the eddy current problem on a laminated material, where using a mesh that resolves each individual…

106

Abstract

Purpose

This paper aims to improve the efficiency of a numerical method to treat the eddy current problem on a laminated material, where using a mesh that resolves each individual laminate would be too computationally expensive.

Design/methodology/approach

The domain is modeled using a coarse mesh that treats the laminated material as a bulk with averaged properties. The fine-structured behavior is recovered by introducing micro-shape functions in the ansatz space. One such method is analyzed to find further model restrictions.

Findings

By using a special reformulation, it is possible to eliminate the additional degrees of freedom introduced by the multiscale ansatz at the cost of an additional modeling error that decreases with the laminate thickness.

Originality/value

The paper gives a computationally more efficient approximate variant to a known multiscale method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 19 June 2007

B. Weiß, O. Bíró, P. Caldera, K. Hollaus, G. Paoli, K. Preis and C. Stockreiter

The convergence of the transfinite‐element (TFE) method for high frequency methods is analyzed in this paper. Two different potential formulations will be compared in the…

268

Abstract

Purpose

The convergence of the transfinite‐element (TFE) method for high frequency methods is analyzed in this paper. Two different potential formulations will be compared in the frequency and time domain.

Design/methodology/approach

The A*‐and A,v‐formulation for time domain and frequency domain transfinite elements are described. The convergence properties of the methods are investigated and demonstrated on a simple test problem.

Findings

It is shown that the convergence of the frequency domain method depends also on the discretization of areas where the field values do not change very much. A numerical example shows that for the calculation of the whole frequency range, the time domain approach is much more faster than the frequency domain method.

Research limitations/implications

Further, work should also cover additional formulations like, e.g. the T,Φ‐formulation.

Practical implications

Pros and cons of different formulations and methods for solving high frequency problems for printed circuit boards or microwave structures are investigated.

Originality/value

The originality of the paper is the comparison, the discussion and the explanations of the convergence of the TFE method for wave propagation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 25
Per page
102050