Search results

1 – 10 of over 1000
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 13 December 2018

Shitendu Some and Sisir Kumar Guha

In the application of hydrostatic double-layered porous journal bearings, instability of bearing systems is a major problem. On the other hand, the use of non-Newtonian fluid as a…

118

Abstract

Purpose

In the application of hydrostatic double-layered porous journal bearings, instability of bearing systems is a major problem. On the other hand, the use of non-Newtonian fluid as a lubricant is more practical in the present days. Furthermore, in case of porous bearing, neglecting slip effect and percolation effect of additives into the pores may lead to erroneous result. Hence, this paper aims to present the linear stability analysis of finite hydrostatic double-layered porous journal bearings lubricated with coupled-stress lubricant with tangential velocity slip and percolation effect.

Design/methodology/approach

First, considering the tangential velocity slip, the most general modified Reynolds-type equation has been derived for the film region and the governing equations for flow in the coarse and fine layers of porous medium incorporating the percolation effect. A linearized first-order perturbation method has been applied to obtain the threshold of stability in terms of critical mass parameter. The effect of various parameters on the stability is investigated and represented in the form of graphs. Furthermore, a comparison between the stability of double- and single-layered porous journal bearings has been exhibited.

Findings

In this paper, threshold of stability has been obtained in terms of critical mass parameter. The effect of slip coefficient, percolation factor, coupled-stress parameter, eccentricity ratio and bearing feeding parameter on the stability has been found.

Originality/value

There is no literature available so far that addresses the analysis of the linear stability of externally pressurized double-layered porous journal bearings with slip flow, including the percolation effect under coupled-stress lubrication. But in this paper, all these points are included which made this paper valuable in design purpose.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 10 August 2012

Richard P. Daisley and Boppana V. Chowdary

The purpose of this paper is to investigate the effects of liquid carbon dioxide (LCO2) on grinding of stainless steel.

215

Abstract

Purpose

The purpose of this paper is to investigate the effects of liquid carbon dioxide (LCO2) on grinding of stainless steel.

Design/methodology/approach

A factorial experimental approach was used to compare the LCO2's performance against grinding under dry air and emulsion coolants.

Findings

The experimental results have a great use to practitioners. It was found that under special conditions, LCO2 proves to be an alternative coolant for grinding of temperature sensitive materials. Furthermore, grinding under LCO2 conditions produced the lowest tangential force, while the normal forces were close to the values found under emulsion fluid environment. When compared to grinding under dry conditions, LCO2 coolant was successful in reducing the work piece temperatures. LCO2 and emulsion conditions inhibit work hardening by reducing material deformation at the grinding zone.

Originality/value

The paper shows that sub‐zero temperature coolants have the ability to bring about lower grinding temperatures than what is typically achieved under conventional fluids.

Details

Industrial Lubrication and Tribology, vol. 64 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 27 July 2018

Manik Bhowmick, Arup Kumar Rakshit and Sajal Kumar Chattopadhyay

Dref-3 friction spun core yarns produced using staple fibre yarn as the core, e.g. Jute core yarn wrapped with cotton fibre, have poorer mechanical properties compared to the core…

61

Abstract

Purpose

Dref-3 friction spun core yarns produced using staple fibre yarn as the core, e.g. Jute core yarn wrapped with cotton fibre, have poorer mechanical properties compared to the core yarn itself. The purpose of this study was to understand the structure of such yarns, that will lead to the optimization of fibre, machine and process variables for production of better quality yarn from the Dref-3/3000 machines.

Design/methodology/approach

The Dref spinning trials were conducted following a full factorial design with six variables, all with two operative levels. The Dref-3 friction spun yarn, in which the core is a plied, twisted ring yarn composed of cotton singles and the sheath, formed from the same cotton fibres making the singles, has been examined. The structures have also been studied by using the tracer fibre technique.

Findings

It was observed that rather than depending on the plied core yarn, the tensile properties of the Dref-3 yarn are significantly determined by the parameters those affect the constituent single yarn tensile properties, i.e. the amount of twist and its twist direction, yarn linear density and the sheath fibre proportion used during the Dref spinning in making the final yarn. Further, when the twist direction of single yarn, double yarn and the Dref spinning false twisting are in the same direction, the produced core-sheath yarn exhibits better tensile properties.

Practical implications

The understanding of the yarn structure will lead to optimized production of all staple fibre core Dref spun yarns.

Social implications

The research work may lead to utilization of coarse and harsh untapped natural fibres to the production of value-added textile products.

Originality/value

Though an earlier research has reported the effects of sheath fibre fineness and length on the tensile and bending properties of Dref-3 friction yarn, the present study is the first documented attempt using the tracer fibre technique to understand Dref-3 yarn structure with plied staple fibrous core.

Details

Research Journal of Textile and Apparel, vol. 22 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Access Restricted. View access options
Article
Publication date: 20 April 2015

Santanu Basak, Kartick K Samanta, Sajal K Chattopadhyay, Rajesh Shashikant Narkar and R Mahangade

The purpose of this paper is to use the natural wastage plant product, bannana pseudostem sap (BPS) for using as fire retardant of cellulosic textile substrate. The study aims to…

532

Abstract

Purpose

The purpose of this paper is to use the natural wastage plant product, bannana pseudostem sap (BPS) for using as fire retardant of cellulosic textile substrate. The study aims to use first time any wastage plant product for making fire retardant cellulosic textile. In this regard flame retardant functionality was imparted in cellulosic textile using BPS, an eco-friendly natural wastage product.

Design/methodology/approach

The extracted sap was made alkaline and applied in pre-mordanted bleached and mercerized cotton fabrics. Flame retardant properties of the control and treated fabrics were analyzed in terms of limiting oxygen index (LOI), horizontal and vertical flammability and total heat of combustion using bomb calorimeter. The thermal degradation and pyrolysis was studied using thermogravimetric analysis (TGA). The chemical composition of the control and BPS treated cellulosic fabric were analyzed by FTIR, SEM and EDX. Durability of the flame retardant functionality to soap washing had also been studied.

Findings

The study showed that the treated fabrics had good flame retardant property compared to control fabrics. The LOI value was found to increase by 1.6 times after application of BPS. As a result of this, the fabric does not catch flame. In horizontal flammability, the treated fabric showed burning with afterglow (without presence of flame) with a propagation rate of 7.5 mm/min, which is almost ten times lower than the control fabric. After application of BPS cellulosic fabric sample produced natural khaki colour. There was no significant change in other physical properties.

Practical implications

The application process is simple and cost-effective as no costly chemicals were used. Further advantage is that the treated fabric could also be considered as natural dyed cotton fabric. The developed khaki colour is quite attractive and stable to sun light exposure. This developed process could used in colouration and flame retardant finishing of home furnishing products such as home-window curtain, railway curtain, hospital curtain, table lamp and as a covering material of non-permanent structure like in book fair, festival, religious purpose, etc., where large quantity of textile is used and has chance of fire hazards.

Social implications

BPS abundantly available in Indian as well as other countries and it is normally considered as waste material. It is eco-friendly and produced from renewable source. Therefore, the application of BPS in cotton textile for colouration and functionalization will give the advantages of value addition using natural product. Rural people will be benifited lot by applying this technology whenever it required.

Originality/value

This paper helps to clarify first time why and how a wastage plant product like BPS can be used for preparing fire retardant cotton cellulosic fabric.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Access Restricted. View access options
Book part
Publication date: 1 September 2023

Ishu Chadda

Abstract

Details

Social Sector Development and Inclusive Growth in India
Type: Book
ISBN: 978-1-83753-187-5

Access Restricted. View access options
Article
Publication date: 1 August 2016

V. Madhusudanan and S. Vijaya

This paper aims to propose and analyse a two-prey–one-predator system with mixed functional response.

116

Abstract

Purpose

This paper aims to propose and analyse a two-prey–one-predator system with mixed functional response.

Design/methodology/approach

The predator exhibits Holling type IV functional response to one prey and Holling type I response to other. The occurrence of various positive equilibrium points with feasibility conditions are determined. The local and global stability of interior equilibrium points are examined. The boundedness of system is analysed. The sufficient conditions for persistence of the system is obtained by using Bendixson–Dulac criteria. Numerical simulations are carried out to illustrate the analytical findings.

Findings

The authors have derived the local and global stability condition of interior equilibrium of the system.

Originality/value

The authors observe that the critical values of some system parameter undergo Hopf bifurcation around some selective equilibrium. Hence, numerical simulations reveal the condition for the system to be stable and oscillatory.

Details

World Journal of Engineering, vol. 13 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 30 December 2019

Shitendu Some and Sisir Kumar Guha

In the application of hydrostatic double-layered porous journal bearings, misalignment of bearing systems is a major problem. On the other hand, the use of coupled-stress fluid as…

124

Abstract

Purpose

In the application of hydrostatic double-layered porous journal bearings, misalignment of bearing systems is a major problem. On the other hand, the use of coupled-stress fluid as a lubricant is more practical in the present days. Furthermore, in case of porous bearing, neglecting slip effect and percolation effect of additives into the pores may lead to erroneous result. Hence, this paper aims to address the effect of journal misalignment and coupled-stress lubricant on the steady-state film pressure of the double-layered porous journal bearing with tangential velocity slip and percolation effect.

Design/methodology/approach

First, considering the tangential velocity slip, the most general modified Reynolds type equation has been derived for the film region and the governing equations for flow in the coarse and fine layers of porous medium, incorporating the percolation effect for a double-layered porous bearing. Here, considering the misalignment caused by shaft displacement. Film thickness expression established considering the effect of misalignment. Steady-state film pressures are obtained by solving modified Reynolds equation based on the coupled-stress lubrication theory. Effects of journal misalignment and coupled-stress lubricant on the pressure profiles in the film region are discussed and demonstrated in the graphical form.

Findings

In this paper, effects of journal misalignment and coupled-stress lubricant on the pressure profiles in the film region are obtained. In general, higher degree of misalignment gives higher steady-state pressure value in the film region, and this pressure increases due to increase in coupled-stress parameter up to a certain limit.

Originality/value

To the best of the author’s knowledge, there is no literature available, so far, that addresses the analysis of the steady-state pressure in the film region of a doubled–layered porous journal bearing under misaligned condition with coupled-stress lubricant. But in this paper all these points are included, which makes this article valuable in design purpose.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 11 April 2016

Abhishek Ghosh and Sisir Kumar Guha

Several researchers have observed that to satisfy modern day’s need, it is essential to enhance the characteristics of journal bearing, which is used in numerous applications…

232

Abstract

Purpose

Several researchers have observed that to satisfy modern day’s need, it is essential to enhance the characteristics of journal bearing, which is used in numerous applications. Moreover, the use of Newtonian fluid as a lubricant is diminishing day by day, and the use of Non-Newtonian fluids is coming more into picture. Furthermore, if turbo-machinery applications are taken into account, then it can be seen that journal bearings are used for high speed applications as well. Thus, neglecting turbulent conditions may lead to erroneous results. Hence, this paper aims to present focuses on studying the stability characteristics of finite hydrodynamic journal bearing under turbulent coupled-stress lubrication.

Design/methodology/approach

First, the governing equation relevant to the problem is generated. Then, the dynamic analysis is carried out by linear perturbation technique, leading to three perturbed equations, which are again discretized by finite difference method. Finally, these discretized equations are solved with the help of Gauss-Seidel Iteration technique with successive over relaxation scheme. Consequently, the film response coefficients and the stability parameters are evaluated at different parametric conditions.

Findings

It has been concluded from the study that with increase in value of the coupled-stress parameter, the stability of the journal may increase. Whereas, with increase in Reynolds number, the stability of the journal decreases. On the other hand, stability increases with increasing values of slenderness ratio.

Originality/value

Researches have been performed to study the dynamic characteristics of journal bearing with non-Newtonian fluid as the lubricant. But in the class of non-Newtonian lubricants, the use of coupled-stress fluid has not yet been properly investigated. So, an attempt has been made to perform the stability analysis of bearings with coupled-stress fluid as the advanced lubricant.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 2 November 2018

Subrata Das and Sisir Kumar Guha

The purpose of this paper is to investigate the effect of turbulence on the stability characteristics of finite hydrodynamic journal bearing lubricated with micropolar fluid.

196

Abstract

Purpose

The purpose of this paper is to investigate the effect of turbulence on the stability characteristics of finite hydrodynamic journal bearing lubricated with micropolar fluid.

Design/methodology/approach

The non-dimensional transient Reynolds equation has been solved to obtain the non-dimensional pressure field which in turn used to obtain the load carrying capacity of the bearing. The second-order equations of motion applicable for journal bearing system have been solved using fourth-order Runge–Kutta method to obtain the stability characteristics.

Findings

It has been observed that turbulence has adverse effect on stability and the whirl ratio at laminar flow condition has the lowest value.

Practical implications

The paper provides the stability characteristics of the finite journal bearing lubricated with micropolar fluid operating in turbulent regime which is very common in practical applications.

Originality/value

Non-linear stability analysis of micropolar fluid lubricated journal bearing operating in turbulent regime has not been reported in literatures so far. This paper is an effort to address the problem of non-linear stability of journal bearings under micropolar lubrication with turbulent effect. The results obtained provide useful information for designing the journal bearing system for high speed applications.

Details

Industrial Lubrication and Tribology, vol. 71 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 3 May 2011

Suresh Verma, Vijay Kumar Jadon and K.D. Gupta

The paper seeks to study, theoretically, the performance characteristics of capillary compensated multi‐recessed hydrostatic journal bearings operating with micropolar lubricant…

500

Abstract

Purpose

The paper seeks to study, theoretically, the performance characteristics of capillary compensated multi‐recessed hydrostatic journal bearings operating with micropolar lubricant. The finite element method is used to solve the modified Reynolds' equation governing the micropolar lubricant flow in the clearance space of a hydrostatic journal bearing. The performance characteristics of bearing operating with micropolar lubricant are presented and compared with that of Newtonian lubricant, for a wide range of non‐dimensional load, capillary restrictor design parameter and micropolar parameters.

Design/methodology/approach

The modified Reynolds' equation governing the flow of the micropolar lubricant is solved along with restrictor flow equation by finite element method so as to obtain fluid‐film pressures. The iterative procedure is repeated until the converged solution for the fluid‐film pressure field is obtained.

Findings

A study of four‐pocket hydrostatic journal bearing system capillary compensated and operating with micropolar lubricant is presented. The following conclusions are made from the results presented in this study: at a constant load, pocket pressures and minimum film thickness, stiffness coefficients and, the damping coefficients increase with increase in micropolar effect of lubricant as compared to the Newtonian lubricant; the influence of the micropolar parameters of lubricant is more significant upon the minimum fluid‐film thickness at higher values of load and lower values of restrictor design parameter; the non‐dimensional flow decreases with increase in the micropolar effect of the lubricant a given values of restrictor design parameter and load; and the stiffness coefficient in the direction of load is found to be influenced by the micropolar parameters and more significantly at lower values of restrictor design parameter and load.

Originality/value

Studies of capillary compensated multi‐recess hydrostatic journal bearing operating with micropolar fluid/lubricant are not available in the existing literature to the best of authors' knowledge. Although, such bearing has been studied with Newtonian lubricant and available in open literature. Therefore, this paper is an original piece of work in the area of micropolar lubrication and compensated hydrostatic bearings.

Details

Industrial Lubrication and Tribology, vol. 63 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000
Per page
102050