Search results
1 – 2 of 2Ji-Myong Kim, Sang-Guk Yum, Manik Das Adhikari and Junseo Bae
This study proposes a deep learning algorithm-based model to predict the repair and maintenance costs of apartment buildings, by collecting repair and maintenance cost data that…
Abstract
Purpose
This study proposes a deep learning algorithm-based model to predict the repair and maintenance costs of apartment buildings, by collecting repair and maintenance cost data that were incurred in an actual apartment complex. More specifically, a long short-term memory (LSTM) algorithm was adopted to develop the prediction model, while the robustness of the model was verified by recurrent neural networks (RNN) and gated recurrent units (GRU) models.
Design/methodology/approach
Repair and maintenance cost data incurred in actual apartment complexes is collected, along with various input variables, such as repair and maintenance timing (calendar year), usage types, building ages, temperature, precipitation, wind speed, humidity and solar radiation. Then, the LSTM algorithm is employed to predict the costs, while two other learning models (RNN and GRU) are taught to validate the robustness of the LSTM model based on R-squared values, mean absolute errors and root mean square errors.
Findings
The LSTM model’s learning is more accurate and reliable to predict repair and maintenance costs of apartment complex, compared to the RNN and GRU models’ learning performance. The proposed model provides a valuable tool that can contribute to mitigating financial management risks and reducing losses in forthcoming apartment construction projects.
Originality/value
Gathering a real-world high-quality data set of apartment’s repair and maintenance costs, this study provides a highly reliable prediction model that can respond to various scenarios to help apartment complex managers plan resources more efficiently, and manage the budget required for repair and maintenance more effectively.
Details
Keywords
The main objectives of this study are to (1) develop and test a cost contingency learning model that can generalize initially estimated contingency amounts by analyzing back the…
Abstract
Purpose
The main objectives of this study are to (1) develop and test a cost contingency learning model that can generalize initially estimated contingency amounts by analyzing back the multiple project changes experienced and (2) uncover the hidden link of the learning networks using a curve-fitting technique for the post-construction evaluation of cost contingency amounts to cover cost risk for future projects.
Design/methodology/approach
Based on a total of 1,434 datapoints collected from DBB and DB transportation projects, a post-construction cost contingency learning model was developed using feedforward neural networks (FNNs). The developed model generalizes cost contingencies under two different project delivery methods (i.e. DBB and DB). The learning outputs of generalized contingency amounts were curve-fitted with the post-construction schedule and cost information, specifically aiming at uncovering the hidden link of the FNNs. Two different bridge projects completed under DBB and DB were employed as illustrative examples to demonstrate how the proposed modeling framework could be implemented.
Findings
With zero or negative values of change growth experienced, it was concluded that cost contingencies were overallocated at the contract stage. On the other hand, with positive values of change growth experienced, it was evaluated that set cost contingencies were insufficient from the post-construction standpoint. Taken together, this study proposed a tangible post-construction evaluation technique that can produce not only the plausible ranges of cost contingencies but also the exact amounts of contingency under DBB and DB contracts.
Originality/value
As the first of its kind, the proposed modeling framework provides agency engineers and decision-makers with tangible assessments of cost contingency coupled with experienced risks at the post-construction stage. Use of the proposed model will help them evaluate the allocation of appropriate contingency amounts. If an agency allocates a cost contingency benchmarked from similar projects on aspects of the base estimate and experienced risks, a set contingency can be defended more reliably. The main findings of this study contribute to post-construction cost contingency verification, enabling agency engineers and decision-makers to systematically evaluate set cost contingencies during the post-construction assessment stage and achieving further any enhanced level of confidence for future cost contingency plans.
Details