Meiting Liu, Wenxin Yu, Junnian Wang, Yu Chen and Yuyan Bian
In this paper, a nine-dimensional chaotic system is designed and applied to secure communication.
Abstract
Purpose
In this paper, a nine-dimensional chaotic system is designed and applied to secure communication.
Design/methodology/approach
Firstly, the equilibrium characteristics, dissipativity, bifurcation diagram and Lyapunov exponent spectrum are used to analyze the relevant characteristics of the proposed nine-dimensional chaotic system. In the analysis of Lyapunov exponential spectrum, when changing the linear parameters, the system shows two states, hyperchaos and chaos. For secure communication, there is a large secret key space. Secondly, C0 complexity and SEcomplexity of the system are analyzed, which shows that the system has sequences closer to random sequences.
Findings
The proposed nine-dimensional system has a large key space and more complex dynamic characteristics
Originality/value
The results show that the proposed nine-dimensional hyperchaotic system has excellent encryption capabilities and can play an important role in the field of secure communication.
Details
Keywords
Zuanbo Zhou, Wenxin Yu, Junnian Wang, Yanming Zhao and Meiting Liu
With the development of integrated circuit and communication technology, digital secure communication has become a research hotspot. This paper aims to design a five-dimensional…
Abstract
Purpose
With the development of integrated circuit and communication technology, digital secure communication has become a research hotspot. This paper aims to design a five-dimensional fractional-order chaotic secure communication circuit with sliding mode synchronous based on microcontroller (MCU).
Design/methodology/approach
First, a five-dimensional fractional-order chaotic system for encryption is constructed. The approximate numerical solution of fractional-order chaotic system is calculated by Adomian decomposition method, and the phase diagram is obtained. Then, combined with the complexity and 0–1 test algorithm, the parameters of fractional-order chaotic system for encryption are selected. In addition, a sliding mode controller based on the new reaching law is constructed, and its stability is proved. The chaotic system can be synchronized in a short time by using sliding mode control synchronization.
Findings
The electronic circuit is implemented to verify the feasibility and effectiveness of the designed scheme.
Originality/value
It is feasible to realize fractional-order chaotic secure communication using MCU, and further reducing the synchronization error is the focus of future work.