Search results

1 – 4 of 4
Article
Publication date: 31 May 2022

Junlin Cheng, Peiyu Ma, Qiang Ruan, Yezhuo Li and Qianqian Zhang

The purpose of this paper is to propose an overall deformation rolling mechanism based on double four-link mechanism. The double quadrilateral mobile mechanism (DQMM) has two…

Abstract

Purpose

The purpose of this paper is to propose an overall deformation rolling mechanism based on double four-link mechanism. The double quadrilateral mobile mechanism (DQMM) has two switchable working modes which can be used to traverse different terrains or climb over obstacles.

Design/methodology/approach

The main body of the DQMM is composed of a double four-link mechanism which sharing a public link and two symmetrical steering platforms which placed at both ends of the four-link mechanism. The steering platforms give the DQMM not only steering ability but also reconnaissance ability which can be achieved by carrying sensors such as cameras on steering platforms. By controlling the deformation of the DQMM, it can switch between two working modes (tracked rolling mode and obstacle-climbing mode) to achieve the functions of rolling and obstacle-climbing. Dynamic simulation model was established to verify the feasibility.

Findings

Based on the kinematics analysis and simulation results of the DQMM, its moving function is realized by the tracked rolling mode, and the obstacle-climbing mode is used to climb over obstacles in structured terrains such as continuous stairs. The feasibility of the two working modes is verified on a physical prototype.

Originality/value

The work of this paper is a new exploration of applying “overall closed moving linkages mechanism” to the area of small mobile mechanisms. The adaptability of different terrains and the ability of obstacle-climbing are improved by the combination of multi-modes.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 January 2017

Yezhuo Li, Yan-An Yao, Junlin Cheng, Yaobin Tian and Ran Liu

The purpose of this paper is to propose an agile assistant robot to be used as a mobile partner with two rotational motions and one translational motion. This robot possesses the…

Abstract

Purpose

The purpose of this paper is to propose an agile assistant robot to be used as a mobile partner with two rotational motions and one translational motion. This robot possesses the rolling function and three operating abilities to assistant human beings in the industrial environment.

Design/methodology/approach

The main body of the robot is a typical 4-RSR (where R denotes a revolute joint and S denotes a spherical joint) parallel mechanism. The mechanism can reach any position on the ground by two rolling modes (the equivalent Watt linkage rolling mode and the equivalent 6R linkage rolling mode), and the robot can work as a spotlight or a worktable in operating modes at the target location. The mobility, rolling modes, operating modes and kinematics are analyzed.

Findings

Based on the results of kinematics of this assistant robot, the upper platform of the 4-RSR rolling mechanism has two rotational motions and one translational motion which can be used in the industry. The proposed concept is verified by experiments on a physical prototype.

Practical implications

This paper also discusses the application to industrial cases where cooperation between workers and robots is required.

Originality/value

The work presented in this paper is a novel exploration to apply parallel mechanisms to the field of assistant rolling robots. It is also a new attempt to use the rolling mechanism in the field of mobile operating robots for industry tasks.

Details

Industrial Robot: An International Journal, vol. 44 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 April 2019

Bangdong Zhi, Xiaohong Liu, Junlin Chen and Fu Jia

The purpose of this paper is to employ an emerging phenomenon in China concerning collaborative carbon emission reduction (CCER) to investigate: first, the coordination of…

1004

Abstract

Purpose

The purpose of this paper is to employ an emerging phenomenon in China concerning collaborative carbon emission reduction (CCER) to investigate: first, the coordination of suppliers and manufacturers within supply chains to reduce carbon emissions, and second, the role of governmental policy in facilitating this process.

Design/methodology/approach

This paper draws upon evolutionary game theory to develop an evolutionary game model for CCER for suppliers and manufacturers within supply chains. This includes a detailed analysis of the evolutionary direction and process in different areas, both with, and in the absence of, governmental subsidies.

Findings

The results demonstrate that CCER is path dependent and that its evolutionary process is influenced by the following four factors: the initial status within supply chains; the cost; the additional benefit; and the investment risk related to CCER. The research also reveals that the reward provided by manufacturers is rational over the long term, due to the excessive cost of incentives potentially preventing the implementation of CCER.

Originality/value

This study represents the first attempt to investigate CCER within supply chains through the application of an evolutionary game-theoretic model. The investigation of multiple factors in the model will deepen understanding of the collaborative role required for the carbon emission reduction.

Details

Management Decision, vol. 57 no. 4
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 10 March 2022

Lei Ma, Hanbo Shi, Siyuan Ding, Chao Zhang, Haibing Yuan and Junlin Pan

The purpose of this paper is to study the wear of railway brake disc/pad in low-temperature environment and to explore the damage form of brake disc/pad materials and the law of…

Abstract

Purpose

The purpose of this paper is to study the wear of railway brake disc/pad in low-temperature environment and to explore the damage form of brake disc/pad materials and the law of temperature rise in braking process and its influence on friction pair material damage.

Design/methodology/approach

The influence of ambient temperature on tribological properties of brake materials was studied by using low-temperature environment simulation device and MM-1000 high-speed brake testing machine. The law of temperature rise in the braking process was simulated by temperature field module of COMSOL.

Findings

The damage of disc sample increases with the decrease of ambient temperature, and the main damage form is furrow. With the decrease of ambient temperature, pitting corrosion, wear, spalling and cracks appear successively. The maximum temperature of brake disc decreases linearly with the decrease of ambient temperature. However, when the ambient temperature is 0 in the experiment, the surface temperature of the disc will increase abnormally because of the increase of abrasive particles caused by the toughening and brittleness transformation of the material.

Originality/value

In this paper, through the study of train braking in low-temperature environment, the damage mechanism and law of train braking pair in low-temperature environment are found, which provide some basis for the development of high-speed railway in low-temperature environment.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 4 of 4