Search results
1 – 3 of 3Qiang Xiao, Liu Yi-Cong, Yue-Peng Zhou, Zhi-Hong Wang, Sui-Xin Fan, Jun-Hu Meng and Junde Guo
Given the current friction and wear challenges faced by automobile parts and bearings, this study aims to identify a novel texture for creating anti-friction and wear-resistant…
Abstract
Purpose
Given the current friction and wear challenges faced by automobile parts and bearings, this study aims to identify a novel texture for creating anti-friction and wear-resistant surfaces. This includes detailing the preparation process with the objective of mitigating friction and wear in working conditions.
Design/methodology/approach
Femtosecond laser technology was used to create a mango-shaped texture on the surface of GCr15 bearing steel. The optimized processing technology of the texture surface was obtained through adjusting the laser scanning speed. The tribological behavior of the laser-textured surface was investigated using a reciprocating tribometer.
Findings
The friction coefficient of the mango-shaped texture surface is 25% lower than that of the conventional surface, this can be attributed to the reduced contact area between the friction ball and the micro-textured surface, leading to stress concentration at the extrusion edge and a larger stress distribution area on the contact part of the ball and disk compared to the conventional surface and the function of the micro-texture in storing wear chips during the sliding process, thereby reducing secondary wear.
Originality/value
The mango-shaped textured surface in this study demonstrates effective solutions for some of the friction and wear issues, offering significant benefits for equipment operation under light load conditions.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0127/
Details
Keywords
Yingxiang Zhao, Junde Guo, Xiaoni Yan, Shan Du, Min Gong, Biao Sun, Junwen Shi and Wen Deng
The purpose of this paper is to investigate the friction and wear mechanisms in copper-based self-lubricating composites with MoS2 as the lubricating phase, which provides a…
Abstract
Purpose
The purpose of this paper is to investigate the friction and wear mechanisms in copper-based self-lubricating composites with MoS2 as the lubricating phase, which provides a theoretical basis for subsequent research on high-performance copper-based self-lubricating materials.
Design/methodology/approach
Friction tests were performed at a speed of 100 r/min, a load of 10 N, a friction radius of 5 mm and a sliding speed of 30 min. Friction experiments were carried out at RT-500°C. The phase composition of the samples was characterized by X-ray diffraction of Cu Ka radiation, and the microstructure, morphology and elemental distribution were characterized by scanning electron microscopy and energy dispersive spectroscopy. Reactants and valences formed during the wear process were analyzed by X-ray photoelectron spectroscopy.
Findings
The addition of MoS2 can effectively improve friction-reducing and anti-wear action of the matrix, which is beneficial to form a lubricating film on the sliding track. After analyzing different changing mechanism of the sliding tracks, the oxides and sulfides of MoS2, MoO2, Cu2O, CuO and Ni(OH)2 were detected to form a synergetic lubricating film on the sliding track, which is responsible for the excellent tribological properties from room to elevated temperature.
Research limitations/implications
For self-lubrication Cu–Sn–Ni–MoS2 material in engineering field, there are still few available references on high-temperature application.
Practical implications
This paper provides a theoretical basis for the following research on copper-based self-lubricating materials with high performance.
Originality/value
With this statement, the authors hereby certify that the manuscript is the results of their own effort and ability. They have indicated all quotes, citations and references. Furthermore, the authors have not submitted any essay, paper or thesis with similar content elsewhere. No conflict of interest exits in the submission of this manuscript.
Details
Keywords
Runling Peng, Jinyue Liu, Wei Wang, Peng Wang, Shijiao Liu, Haonan Zhai, Leyang Dai and Junde Guo
This study aims to investigate the synergistic friction reduction and antiwear effects of lyophilized graphene loading nano-copper (RGO/Cu) as lubricating oil additives, compared…
Abstract
Purpose
This study aims to investigate the synergistic friction reduction and antiwear effects of lyophilized graphene loading nano-copper (RGO/Cu) as lubricating oil additives, compared with graphene.
Design/methodology/approach
The friction performance of freeze-drying graphene (RGO) and RGO/Cu particles was investigated at different addition concentrations and under different conditions.
Findings
Graphene plays a synergistic friction reduction and antiwear effect because of its large specific surface area, surface folds and loading capacity on the nanoparticles. The results showed that the average friction coefficients of RGO and RGO/Cu particles were 22.9% and 6.1% lower than that of base oil and RGO oil, respectively. In addition, the widths of wear scars were 62.3% and 55.3% lower than those of RGO/Cu particles, respectively.
Originality/value
The RGO single agent is suitable for medium-load and high-speed conditions, while the RGO/Cu particles can perform better in the conditions of heavy load and high speed.
Details