Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 December 2005

Abdullah Al‐Badi, Adel Gastli and Joseph A. Jervase

The parameters of axial‐field machines are very small compared with the parameters of conventional machines. Different measuring methods are normally used in order to obtain good…

421

Abstract

Purpose

The parameters of axial‐field machines are very small compared with the parameters of conventional machines. Different measuring methods are normally used in order to obtain good estimates of the machine parameters. These methods are difficult to perform, costly and time consuming. This paper proposes the use of genetic algorithms to predict the self and mutual inductances of a specific type of axial‐field machine, the Torus motor.

Design/methodology/approach

The parameter extraction is reformulated as a search and optimization problem in which the only requirement is a set of values of current versus time and an approximate estimate of the parameters.

Findings

The predicted machine self and mutual inductances are verified by comparing with several measuring methods and excellent agreement is obtained.

Originality/value

Demonstrates that genetic algorithms can predict the self and mutual inductances of the Torus machine automatically with high accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 1 of 1
Per page
102050