Search results
1 – 10 of 10Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha
The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…
Abstract
Purpose
The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.
Design/methodology/approach
The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.
Findings
The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.
Originality/value
AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.
Details
Keywords
João Araújo Afonso, Jorge Lino Alves, Gabriela Caldas, Barbara Perry Gouveia, Leonardo Santana and Jorge Belinha
This paper aims to evaluate the influence of the parameters of the Fused Filament Fabrication (FFF) process on the mechanical properties and on the mass of parts printed in…
Abstract
Purpose
This paper aims to evaluate the influence of the parameters of the Fused Filament Fabrication (FFF) process on the mechanical properties and on the mass of parts printed in Polylactic Acid (PLA). In addition, the authors developed predictive models for the analysed responses.
Design/methodology/approach
A full Factorial type of experimental planning method was used to define the conditions for manufacturing parts according to the variation of the construction parameters, extrusion temperature and print speed. Samples were printed for tensile, flexion and compression tests. Their mass was measured. Multiple regression methods, based on power equations, were used to build the forecasting models.
Findings
It was found that the extrusion temperature was the parameter of greatest influence in the variation of the analysed responses, mainly because it generates behaviour patterns and indirectly demonstrates thermal/rheological characteristics of the material used. Print speed affects responses, however, with variations dependent on part geometry and printer hardware/software. It was possible to establish prediction models with low error rates in relation to the experimental values.
Originality/value
The study demonstrates a good relation between the use of a structured experimental planning method as the basis for the development of predictive models based on mathematical equations, the same structure of which can be used to describe different responses.
Details
Keywords
Arthur de Carvalho Cruzeiro, Leonardo Santana, Danay Manzo Jaime, Sílvia Ramoa, Jorge Lino Alves and Guilherme Mariz de Oliveira Barra
This study aims to evaluate in situ oxidative polymerization of aniline (Ani) as a post-processing method to promote extrusion-based 3D printed parts, made from insulating…
Abstract
Purpose
This study aims to evaluate in situ oxidative polymerization of aniline (Ani) as a post-processing method to promote extrusion-based 3D printed parts, made from insulating polymers, to components with functional properties, including electrical conductivity and chemical sensitivity.
Design/methodology/approach
Extrusion-based 3D printed parts of polyethylene terephthalate modified with glycol (PETG) and polypropylene (PP) were coated in an aqueous acid solution via in situ oxidative polymerization of Ani. First, the feedstocks were characterized. Densely printed samples were then used to assess the adhesion of polyaniline (PAni) and electrical conductivity on printed parts. The best feedstock candidate for PAni coating was selected for further analysis. Last, a Taguchi methodology was used to evaluate the influence of printing parameters on the coating of porous samples. Analysis of variance and Tukey post hoc test were used to identify the best levels for each parameter.
Findings
Colorimetry measurements showed significant color shifts in PP samples and no shifts in PETG samples upon pullout testing. The incorporation of PAni content and electrical conductivity were, respectively, 41% and 571% higher for PETG in comparison to PP. Upon coating, the surface energy of both materials decreased. Additionally, the dynamic mechanical analysis test showed minimal influence of PAni over the dynamic mechanical properties of PETG. The parametric study indicated that only layer thickness and infill pattern had a significant influence on PAni incorporation and electrical conductivity of coated porous samples.
Originality/value
Current literature reports difficulties in incorporating PAni without affecting dimensional precision and feedstock stability. In situ, oxidative polymerization of Ani could overcome these limitations. However, its use as a functional post-processing of extrusion-based printed parts is a novelty.
Details
Keywords
Manuel Jesus, Ana Sofia Guimarães, Bárbara Rangel and Jorge Lino Alves
The paper seeks to bridge the already familiar benefits of 3D printing (3DP) to the rehabilitation of cultural heritage, still based on the use of complex and expensive…
Abstract
Purpose
The paper seeks to bridge the already familiar benefits of 3D printing (3DP) to the rehabilitation of cultural heritage, still based on the use of complex and expensive handcrafted techniques and scarce materials.
Design/methodology/approach
A compilation of different information on frequent anomalies in cultural heritage buildings and commonly used materials is conducted; subsequently, some innovative techniques used in the construction sector (3DP and 3D scanning) are addressed, as well as some case studies related to the rehabilitation of cultural heritage building elements, leading to a reflection on the opportunities and challenges of this application within these types of buildings.
Findings
The compilation of information summarised in the paper provided a clear reflection on the great potential of 3DP for cultural heritage rehabilitation, requiring the development of new mixtures (lime mortars, for example) compatible with the existing surface and, eventually, incorporating some residues that may improve interesting properties; the design of different extruders, compatible with the new mixtures developed and the articulation of 3D printers with the available mapping tools (photogrammetry and laser scanning) to reproduce the component as accurately as possible.
Originality/value
This paper sets the path for a new application of 3DP in construction, namely in the field of cultural heritage rehabilitation, by identifying some key opportunities, challenges and for designing the process flow associated with the different technologies involved.
Details
Keywords
Henrique Takashi Idogava, Daniel Marcos Souza do Couto, Leonardo Santana, Jorge Lino Alves and Zilda Castro Silveira
This paper aims to address the development and implementation of “AltPrint,” a slicing algorithm based on a new filling process planning from a variation in the deposited material…
Abstract
Purpose
This paper aims to address the development and implementation of “AltPrint,” a slicing algorithm based on a new filling process planning from a variation in the deposited material geometry. AltPrint enables changes in the extruded material flow toward local variations in stiffness. The technical feasibility evaluation was conducted experimentally by fused filament fabrication (FFF) process of snap-fit subjected to a mechanical cyclical test.
Design/methodology/approach
The methodology is based on the estimation of the parameter E from the mathematical relationships among the variation of the material in the material flow, nozzle geometry and extrusion parameters. Calibration, validation and analysis of the printed specimens were divided into two moments, of which the first refers to the material responses (flexural and dynamic mechanical analysis) and the second involves the analysis of the printed components with localized flow properties (for estimating the response to cyclic loading). Finite element analysis assisted in the comparison of two snap-fit geometries, one traditional and one generated by AltPrint. Finally, three examples of compliant mechanisms were developed to demonstrate the potential of the algorithm in the generation of functional prototypes.
Findings
The contribution of AltPrint is the variable fill width integrated with the slicing software that varies the print parameters in different regions of the object. The alternative extrusion method based on material rate variation was conceived as an “open software” available in GitHub platform, hence, open manufacturing with initial focus on desktop 3D printer based on FFF. The slicing method provides deposited variable-width segments in an organized and replicable filling strategy, resulting in mechanical properties variations in specific regions of a part. It was implemented and evaluated experimentally and indicated potential applications in parts manufactured by the additive process based on extrusion, which requires local flexibilities.
Originality/value
This paper presents a new alternative method for application in an open additive manufacturing context, specifically for additive extrusion techniques that enable local variations in the material flow. Its potential for manufacturing functional parts, which require flexibility due to cyclic loading, was demonstrated by fabrication and experimental evaluations of parts made in acrylonitrile butadiene styrene filament. The changes proposed by AltPrint enable geometric modifications in the response of the printed parts. The proposed slicing and filling control of parameters is inserted in a context of design for additive manufacturing and shows great potential in the area of product design.
Details
Keywords
Isaac Ferreira, Carolina Melo, Rui Neto, Margarida Machado, Jorge Lino Alves and Sacha Mould
The purpose of this study is to evaluate and compare the mechanical performance of FFF parts when subjected to post processing thermal treatment. Therefore, a study of the…
Abstract
Purpose
The purpose of this study is to evaluate and compare the mechanical performance of FFF parts when subjected to post processing thermal treatment. Therefore, a study of the annealing treatment influence on the mechanical properties was performed. For this, two different types of Nylon (PA12) were used, FX256 and CF15, being the second a short fibre reinforcement version of the first one.
Design/methodology/approach
In this study, tensile and flexural properties of specimens produced via FFF were determined after being annealed at temperatures of 135°C, 150°C or 165°C during 3, 6, 12 or 18 h and compared with the non-treated conditions. Differential scanning calorimetry (DSC) was performed to determine the degree of crystallinity. To evaluate the annealing parameters’ influence on the mechanical properties, a full factorial design of experiments was developed, followed by an analysis of variance, as well as post hoc comparisons, to determine the most significative intervening factors and their effect on the results.
Findings
The results indicate that CF15 increased its tensile modulus, strength, flexural modulus and flexural strength around 11%, while FX256 presented similar values for tensile properties, doubling for flexural results. Flexural strain presented an improvement, indicating an increased interlayer behaviour. Concerning to the DSC analysis, an increase in the degree of crystallinity for all the annealed parts.
Originality/value
Overall, the annealing treatment process cause a significant improvement in the mechanical performance of the material, with the exception of 165°C annealed specimens, in which a decrease of the mechanical properties was observed, resultant of material degradation.
Details
Keywords
Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Augusto Barata da Rocha, Rui Neto and Carlos Da Silva Mota
The purpose of this paper is to prove and qualify the influence of textured surface substrates morphology and chemical composition on the growth and propagation of transplanted…
Abstract
Purpose
The purpose of this paper is to prove and qualify the influence of textured surface substrates morphology and chemical composition on the growth and propagation of transplanted corals. Use additive manufacturing and silicone moulds for converting three-dimensional samples into limestone mortar with white Portland cement substrates for coral growth.
Design/methodology/approach
Tiles samples were designed and printed with different geometries and textures inspired by nature marine environment. Commercial coral frag tiles were analysed through scanning electron microscopy (SEM) to identify the main chemical elements. Raw materials and coral species were selected. New base substrates were manufactured and deployed into a closed-circuit aquarium to monitor the coral weekly evolution process and analyse the results obtained.
Findings
Experimental results provided positive statistical parameters for future implementation tests, concluding that the intensity of textured surface, interfered favourably in the coralline algae biofilm growth. The chemical composition and design of the substrates were determinant factors for successful coral propagation. Recesses and cavities mimic the natural rocks aspect and promoted the presence and interaction of other species that favour the richness of the ecosystem.
Originality/value
Additive manufacturing provided an innovative method of production for ecology restoration areas, allowing rapid prototyping of substrates with high complexity morphologies, a critical and fundamental attribute to guarantee coral growth and Crustose Coralline Algae. The result of this study showed the feasibility of this approach using three-dimensional printing technologies.
Details
Keywords
Carolyn J. Cordery and David Hay
New public management (NPM) has transformed the public sector auditing context, although in quite different ways. Further, investigations into NPM’s impact on public sector…
Abstract
Purpose
New public management (NPM) has transformed the public sector auditing context, although in quite different ways. Further, investigations into NPM’s impact on public sector auditors and audit institutions have been largely unconnected, with the exception of the critical examination of performance audits. We investigate the question of how public sector auditors’ roles and activities have changed as a result of NPM and later reforms.
Design/methodology/approach
We examine and synthesise public sector audit research examining reforms since the year 2000. The research presented considers changes to external and internal public sector audits as well as the development of public sector audit institutions – known as supreme audit institutions (SAIs).
Findings
Considerable changes have occurred. Many were influenced by NPM, but others have evolved from the eco-system of accounting, auditing and public sector management. External auditors have responded to an increase in demand for accountability. Additional management and governance techniques have been introduced from the private sector, such as internal auditing and audit committees. NPM has also led to conflicting trends, particularly when governments introduced competition to public sector auditing by contracting out but then chose to centralise to improve accountability. There is also greater international influence now through bodies like the International Organisation of Supreme Audit Institutions (INTOSAI) and similar regional bodies.
Originality/value
NPM reforms and the eco-system have impacted public sector auditing. Sustainability reporting is emerging as an area requiring more auditing attention; auditors also need to continue to develop better ways to communicate with citizens. Further, research into auditing in non-Western nations and emerging technologies is also required, especially where it provides learnings around more valuable audit practices. Empirical evidence is required of the strengths and weaknesses of SAIs’ structural variety.
Details