Search results

1 – 5 of 5
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 23 February 2018

Maxwell Fordjour Antwi-Afari, Heng Li, David John Edwards, Erika Anneli Pärn, De-Graft Owusu-Manu, Joonoh Seo and Arnold Yu Lok Wong

Work-related low back disorders (LBDs) are prevalent among rebar workers although their causes remain uncertain. The purpose of this study is to examine the self-reported…

756

Abstract

Purpose

Work-related low back disorders (LBDs) are prevalent among rebar workers although their causes remain uncertain. The purpose of this study is to examine the self-reported discomfort and spinal biomechanics (muscle activity and spinal kinematics) experienced by rebar workers.

Design/methodology/approach

In all, 20 healthy male participants performed simulated repetitive rebar lifting tasks with three different lifting weights, using either a stoop (n = 10) or a squat (n = 10) lifting posture, until subjective fatigue was reached. During these tasks, trunk muscle activity and spinal kinematics were recorded using surface electromyography and motion sensors, respectively.

Findings

A mixed-model, repeated measures analysis of variance revealed that an increase in lifting weight significantly increased lower back muscle activity at L3 level but decreased fatigue and time to fatigue (endurance time) (p < 0.05). Lifting postures had no significant effect on spinal biomechanics (p < 0.05). Test results revealed that lifting different weights causes disproportional loading upon muscles, which shortens the time to reach working endurance and increases the risk of developing LBDs among rebar workers.

Research limitations/implications

Future research is required to: broaden the research scope to include other trades; investigate the effects of using assistive lifting devices to reduce manual handling risks posed; and develop automated human condition-based solutions to monitor trunk muscle activity and spinal kinematics.

Originality/value

This study fulfils an identified need to study laboratory-based simulated task conducted to investigate the risk of developing LBDs among rebar workers primarily caused by repetitive rebar lifting.

Details

Construction Innovation, vol. 18 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Access Restricted. View access options
Article
Publication date: 10 July 2017

Maxwell Fordjour Antwi-Afari, Heng Li, David John Edwards, Erika Anneli Pärn, JoonOh Seo and Arnold Wong

Repetitive lifting tasks have detrimental effects upon balance control and may contribute toward fall injuries, yet despite this causal linkage, risk factors involved remain…

828

Abstract

Purpose

Repetitive lifting tasks have detrimental effects upon balance control and may contribute toward fall injuries, yet despite this causal linkage, risk factors involved remain elusive. The purpose of this paper is to evaluate the effects of different weights and lifting postures on balance control using simulated repetitive lifting tasks.

Design/methodology/approach

In total, 20 healthy male participants underwent balance control assessments before and immediately after a fatiguing repetitive lifting tasks using three different weights in a stoop (ten participants) or a squat (ten participants) lifting posture. Balance control assessments required participants to stand still on a force plate with or without a foam (which simulated an unstable surface) while center of pressure (CoP) displacement parameters on the force plate was measured.

Findings

Results reveal that: increased weight (but not lifting posture) significantly increases CoP parameters; stoop and squat lifting postures performed until subjective fatigue induce a similar increase in CoP parameters; and fatigue adversely effected the participant’s balance control on an unstable surface vis-à-vis a stable surface. Findings suggest that repetitive lifting of heavier weights would significantly jeopardize individuals’ balance control on unstable supporting surfaces, which may heighten the risk of falls.

Originality/value

This research offers an entirely new and novel approach to measuring the impact that different lifting weights and postures may have upon worker stability and consequential fall incidents that may arise.

Details

International Journal of Building Pathology and Adaptation, vol. 35 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Access Restricted. View access options
Article
Publication date: 15 September 2020

Maxwell Fordjour Antwi-Afari, Heng Li, JoonOh Seo, Shahnawaz Anwer, Sitsofe Kwame Yevu and Zezhou Wu

Construction workers are frequently exposed to safety hazards on sites. Wearable sensing systems (e.g. wearable inertial measurement units (WIMUs), wearable insole pressure system…

738

Abstract

Purpose

Construction workers are frequently exposed to safety hazards on sites. Wearable sensing systems (e.g. wearable inertial measurement units (WIMUs), wearable insole pressure system (WIPS)) have been used to collect workers' gait patterns for distinguishing safety hazards. However, the performance of measuring WIPS-based gait parameters for identifying safety hazards as compared to a reference system (i.e. WIMUs) has not been studied. Therefore, this study examined the validity and reliability of measuring WIPS-based gait parameters as compared to WIMU-based gait parameters for distinguishing safety hazards in construction.

Design/methodology/approach

Five fall-risk events were conducted in a laboratory setting, and the performance of the proposed approach was assessed by calculating the mean difference (MD), mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE) and intraclass correlation coefficient (ICC) of five gait parameters.

Findings

Comparable results of MD, MAE, MAPE and RMSE were found between WIPS-based gait parameters and the reference system. Furthermore, all measured gait parameters had validity (ICC = 0.751) and test-retest reliability (ICC = 0.910) closer to 1, indicating a good performance of measuring WIPS-based gait parameters for distinguishing safety hazards.

Research limitations/implications

Overall, this study supports the relevance of developing a WIPS as a noninvasive wearable sensing system for identifying safety hazards on construction sites, thus highlighting the usefulness of its applications for construction safety research.

Originality/value

This is the first study to examine the performance of a wearable insole pressure system for identifying safety hazards in construction.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 6
Type: Research Article
ISSN: 0969-9988

Keywords

Access Restricted. View access options
Article
Publication date: 22 June 2021

Jin Gang Lee, Hyun-Soo Lee, Moonseo Park and JoonOh Seo

Reliable conceptual cost estimation of large-scale construction projects is critical for successful project planning and execution. For addressing the limited data availability in…

755

Abstract

Purpose

Reliable conceptual cost estimation of large-scale construction projects is critical for successful project planning and execution. For addressing the limited data availability in conceptual cost estimation, this study proposes an enhanced ANN-based cost estimating model that incorporates artificial neural networks, ensemble modeling and a factor analysis approach.

Design/methodology/approach

In the ANN-based conceptual cost estimating model, the ensemble modeling component enhances training, and thus, improves its predictive accuracy and stability when project data quantity is low; and the factor analysis component finds the optimal input for an estimating model, rendering explanations of project data more descriptive.

Findings

On the basis of the results of experiments, it can be concluded that ensemble modeling and FAMD (Factor Analysis of Mixed Data) are both conjointly capable of improving the accuracy of conceptual cost estimates. The ANN model version combining bootstrap aggregation and FAMD improved estimation accuracy and reliability despite these very low project sample sizes.

Research limitations/implications

The generalizability of the findings is hard to justify since it is difficult to collect cost data of construction projects comprehensively. But this difficulty means that our proposed approaches and findings can provide more accurate and stable conceptual cost forecasting in the early stages of project development.

Originality/value

From the perspective of this research, previous uses of past-project data can be deemed to have underutilized that information, and this study has highlighted that — even when limited in quantity — past-project data can and should be utilized effectively in the generation of conceptual cost estimates.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 7
Type: Research Article
ISSN: 0969-9988

Keywords

Access Restricted. View access options
Article
Publication date: 10 May 2019

Maxwell Fordjour Antwi-Afari, Heng Li, Johnny Kwok-Wai Wong, Olugbenga Timo Oladinrin, Janet Xin Ge, JoonOh Seo and Arnold Yu Lok Wong

Sensing- and warning-based technologies are widely used in the construction industry for occupational health and safety (OHS) monitoring and management. A comprehensive…

2456

Abstract

Purpose

Sensing- and warning-based technologies are widely used in the construction industry for occupational health and safety (OHS) monitoring and management. A comprehensive understanding of the different types and specific research topics related to the application of sensing- and warning-based technologies is essential to improve OHS in the construction industry. The purpose of this paper is to examine the current trends, different types and research topics related to the applications of sensing- and warning-based technology for improving OHS through the analysis of articles published between 1996 and 2017 (years inclusive).

Design/methodology/approach

A standardized three-step screening and data extraction method was used. A total of 87 articles met the inclusion criteria.

Findings

The annual publication trends and relative contributions of individual journals were discussed. Additionally, this review discusses the current trends of different types of sensing- and warning-based technology applications for improving OHS in the industry, six relevant research topics, four major research gaps and future research directions.

Originality/value

Overall, this review may serve as a spur for researchers and practitioners to extend sensing- and warning-based technology applications to improve OHS in the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 5 of 5
Per page
102050