Search results

1 – 3 of 3
Article
Publication date: 1 February 2000

Joo‐Sik Yoo

The problem of transient heat transfer and growth of solid in the inviscid stagnation flow when phase change from liquid to solid occurs is considered. A fast and accurate…

Abstract

The problem of transient heat transfer and growth of solid in the inviscid stagnation flow when phase change from liquid to solid occurs is considered. A fast and accurate numerical scheme is developed to determine the instantaneous temperature distribution in both solid and liquid phases and the growth rate of solid directly, without iterative calculation. The solution of the dimensionless governing equations is dependent on the three dimensionless parameters. The characteristics of the transient heat transfer and solidification process for all the parameters are elucidated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 October 2005

Joo‐Sik Yoo

This study considers the natural convection in a horizontal annulus with constant heat flux on the inner cylinder, and investigates the transition of flows for various Prandtl…

Abstract

Purpose

This study considers the natural convection in a horizontal annulus with constant heat flux on the inner cylinder, and investigates the transition of flows for various Prandtl numbers.

Design/methodology/approach

The streamfunction‐vorticity equation and the energy equation governing the flow and temperature field are solved with finite difference method.

Findings

Results are presented to show the transition of flow patterns with increase (or decrease) of the Rayleigh number, and a hysteresis phenomenon is observed.

Originality/value

Dual solutions are shown by using a numerical analysis in a horizontal annulus with constant heat flux on the inner wall.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 October 2021

Mona Bokharaei Nia, Mohammadali Afshar Kazemi, Changiz Valmohammadi and Ghanbar Abbaspour

The increase in the number of healthcare wearable (Internet of Things) IoT options is making it difficult for individuals, healthcare experts and physicians to find the right…

Abstract

Purpose

The increase in the number of healthcare wearable (Internet of Things) IoT options is making it difficult for individuals, healthcare experts and physicians to find the right smart device that best matches their requirements or treatments. The purpose of this research is to propose a framework for a recommender system to advise on the best device for the patient using machine learning algorithms and social media sentiment analysis. This approach will provide great value for patients, doctors, medical centers, and hospitals to enable them to provide the best advice and guidance in allocating the device for that particular time in the treatment process.

Design/methodology/approach

This data-driven approach comprises multiple stages that lead to classifying the diseases that a patient is currently facing or is at risk of facing by using and comparing the results of various machine learning algorithms. Hereupon, the proposed recommender framework aggregates the specifications of wearable IoT devices along with the image of the wearable product, which is the extracted user perception shared on social media after applying sentiment analysis. Lastly, a proposed computation with the use of a genetic algorithm was used to compute all the collected data and to recommend the wearable IoT device recommendation for a patient.

Findings

The proposed conceptual framework illustrates how health record data, diseases, wearable devices, social media sentiment analysis and machine learning algorithms are interrelated to recommend the relevant wearable IoT devices for each patient. With the consultation of 15 physicians, each a specialist in their area, the proof-of-concept implementation result shows an accuracy rate of up to 95% using 17 settings of machine learning algorithms over multiple disease-detection stages. Social media sentiment analysis was computed at 76% accuracy. To reach the final optimized result for each patient, the proposed formula using a Genetic Algorithm has been tested and its results presented.

Research limitations/implications

The research data were limited to recommendations for the best wearable devices for five types of patient diseases. The authors could not compare the results of this research with other studies because of the novelty of the proposed framework and, as such, the lack of available relevant research.

Practical implications

The emerging trend of wearable IoT devices is having a significant impact on the lifestyle of people. The interest in healthcare and well-being is a major driver of this growth. This framework can help in accelerating the transformation of smart hospitals and can assist doctors in finding and suggesting the right wearable IoT for their patients smartly and efficiently during treatment for various diseases. Furthermore, wearable device manufacturers can also use the outcome of the proposed platform to develop personalized wearable devices for patients in the future.

Originality/value

In this study, by considering patient health, disease-detection algorithm, wearable and IoT social media sentiment analysis, and healthcare wearable device dataset, we were able to propose and test a framework for the intelligent recommendation of wearable and IoT devices helping healthcare professionals and patients find wearable devices with a better understanding of their demands and experiences.

1 – 3 of 3