Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 20 August 2018

Rui Zhou, Johnny Siu-Hang Li and Jeffrey Pai

The purpose of this paper is to examine the reduction of crop yield uncertainty using rainfall index insurances. The insurance payouts are determined by a transparent rainfall…

388

Abstract

Purpose

The purpose of this paper is to examine the reduction of crop yield uncertainty using rainfall index insurances. The insurance payouts are determined by a transparent rainfall index rather than actual crop yield of any producer, thereby circumventing problems of adverse selection and moral hazard. The authors consider insurances on rainfall indexes of various months and derive an optimal insurance portfolio that minimizes the income variance for a crop producer.

Design/methodology/approach

Various regression models are considered to relate crop yield to monthly mean temperature and monthly cumulative precipitation. A bootstrapping method is used to simulate weather indexes and corn yield in a future year with the correlation between precipitation and temperature incorporated. Based on the simulated scenarios, the optimal insurance portfolio that minimizes the income variance for a crop producer is obtained. In addition, the impact of correlation between temperature and precipitation, availability of temperature index insurance and geographical basis risk on the effectiveness of rainfall index insurance is examined.

Findings

The authors illustrate the approach with the corn yield in Illinois east crop reporting district and weather data of a city in the same district. The analysis shows that corn yield in this district is negatively influenced by excessive precipitation in May and drought in June–August. Rainfall index insurance portfolio can reduce the income variance by up to 51.84 percent. Failing to incorporate the correlation between temperature and precipitation decreases variance reduction by 11.6 percent. The presence of geographical basis risk decreases variance reduction by a striking 24.11 percent. Allowing for the purchase of both rainfall and temperature index insurances increases variance reduction by 13.67 percent.

Originality/value

By including precipitation shortfall into explanatory variables, the extended crop yield model explains more fluctuation in crop yield than existing models. The authors use a bootstrapping method instead of complex parametric models to simulate weather indexes and crop yield for a future year and assess the effectiveness of rainfall index insurance. The optimal insurance portfolio obtained provides insights on the practical development of rainfall insurance for corn producers, from the selection of triggering index to the demand of the insurance.

Details

Agricultural Finance Review, vol. 78 no. 5
Type: Research Article
ISSN: 0002-1466

Keywords

Access Restricted. View access options
Article
Publication date: 3 May 2016

Rui Zhou, Johnny Siu-Hang Li and Jeffrey Pai

The application of weather derivatives in hedging crop yield risk is gaining more interest. However, the further development of weather derivatives – particularly exchange-traded…

525

Abstract

Purpose

The application of weather derivatives in hedging crop yield risk is gaining more interest. However, the further development of weather derivatives – particularly exchange-traded – in the agricultural sector has been impeded by concerns over their hedging performance. The purpose of this paper is to develop a new framework to derive the optimal hedging strategy and evaluate hedging effectiveness.

Design/methodology/approach

This framework incorporates a stochastic temperature model, a crop yield model, a risk-neutral pricing method and a profit optimization procedure. Based on a large number of simulated scenarios, the authors study crop yield hedge for a future year. The authors allow the hedger to choose from different types of exchange-traded weather derivatives, and examine the impact of various factors on the optimal hedging strategy.

Findings

The analysis shows that hedging objective, pricing method and geographical location of the hedged exposure all play important roles in choosing the best hedging strategy and assessing hedging effectiveness.

Originality/value

This framework is forward-looking, because it focusses on the crop yield hedge for a future year rather than on the historical hedging effectiveness often studied in literature. It utilizes the most up-to-date information related to temperature and crop yield, and hence produces a hedging strategy which is more relevant to the year under consideration.

1 – 2 of 2
Per page
102050