Search results

1 – 10 of 15
Article
Publication date: 29 August 2024

Yunxiang Li, Yunfei Ai, Jinzhou Zou, Liangyu Liu, Chengjian Liu, Siheng Fu, Dehua Zou and Wang Wei

By analyzing the shortcomings of existing insulator robots, a novel ultra high voltage (UHV) insulator climbing robot, which could transfer between adjacent insulator strings, is…

Abstract

Purpose

By analyzing the shortcomings of existing insulator robots, a novel ultra high voltage (UHV) insulator climbing robot, which could transfer between adjacent insulator strings, is proposed for operation on 800KV multiple-string insulators. An extended inchworm-like configuration was chosen and a stable gripping claw suitable for the insulator string was designed to enable the robot to multiple-string insulators. Then a set of nonheuristic structural parameters that can influence energy consumption was chosen to formulate a nonlinear optimization problem based on the configuration, which improved the energy efficiency of the robot during progressing along a string of insulator.

Design/methodology/approach

The purpose of this paper is to design an insulator climbing robot for operation on UHV multiple-string insulators, which could transfer between adjacent insulator strings and progressed along a string of insulator with high energy efficiency.

Findings

A physical prototype was constructed that can operate at the speed of six pieces per minute (approximately 1.44 meters per minute) on a single string and complete transference between adjacent strings in 45 s. The energy consumption of joints during progressed along a string of insulator had been reduced by 38.8% with the optimized parameters, demonstrating the consistency between the experimental and simulation results.

Originality/value

An insulator climbing robot for operation on UHV multiple-string insulators has been developed with energy consumption optimization design. The robot can transfer between adjacent insulator strings and progressed along a string of insulator with high energy efficiency. The CLIBOT could be expanded to detect or clean the insulators with similar specification.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 November 2010

Lianyu Fu, Xueguang Li and Qiang Guo

The purpose of this paper is to present key points relating to the development of micro drill bits with high aspect ratios and to provide a solution for high aspect ratio hole…

Abstract

Purpose

The purpose of this paper is to present key points relating to the development of micro drill bits with high aspect ratios and to provide a solution for high aspect ratio hole drilling.

Design/methodology/approach

Based on the analysis of challenges in high aspect ratio hole drilling, key points for the development of micro drills bit with high aspect ratio are discussed. A design example of a micro drill bit with 0.3 mm diameter and a 7.2 mm flute length is presented. Experiments are conducted to verify the performance of the developed micro drill bit.

Findings

Helix angle, web thickness and flute land ratio are three key parameters that significantly influence the behaviour of micro drill bits with high aspect ratios. Large helix angle, web thickness and flute land ratio are beneficial in terms of improving the performance of high aspect ratio micro drill bits. Step drilling is essential to prevent drill breakage and to ensure smooth debris evacuation. Meanwhile, proper steps and drilling parameters are of great importance to complete high aspect ratio hole drilling.

Originality/value

The paper highlights key points relating to the development of micro drill bits with high aspect ratios that can provide a satisfactory solution for high aspect ratio micro drill bit design.

Details

Circuit World, vol. 36 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 18 November 2013

Haitian Zou, Baolin Wang, Fumin Song and Lianyu Fu

The purpose of this paper is to verify the feasibility and reliability of mineral casting applied in high-precision printed circuit board (PCB) drilling machine. The mechanical…

Abstract

Purpose

The purpose of this paper is to verify the feasibility and reliability of mineral casting applied in high-precision printed circuit board (PCB) drilling machine. The mechanical properties of machine frame are quantified to provide a solution for machine tool industry to seek a perfect substance competing with classic materials such as cast iron and granite.

Design/methodology/approach

The optimal design of machine frame is performed via the CAD system combined with finite element analysis (FEA). The mechanical properties of the frame elements are evaluated by a series of mechanical experiments: static performance is quantified by flatness tests, dynamic behavior is estimated by experimental and numerical models, respectively. Meanwhile, the performance of the frame element with traditional materials is examined experimentally.

Findings

Mineral casting parts can be successfully applied to PCB drilling machine to meet high accuracy requirements. The characteristic of mineral casing gives the most possibilities in structural design. The frame parts show good static/dynamic behaviors by structural optimization processes. Especially, the machine frame with mineral casting gains a great weight reduction compared with traditional materials.

Originality/value

The application of mineral casting in PCB drilling machine offers greater design flexibility and innovative system solutions. The combination of FEA is convincing to achieve optimal structure and ideal weight to maximize the economic and technical benefits. Moreover, lightweight design of machine structural components achieves not only higher kinematic/dynamic precision but also considerable cost reduction.

Details

Circuit World, vol. 39 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 27 November 2007

Lianyu Fu, Jianguo Qu and Haibin Chen

To provide a clear picture of the current status of mechanical drilling of printed circuit boards (PCBs).

Abstract

Purpose

To provide a clear picture of the current status of mechanical drilling of printed circuit boards (PCBs).

Design/methodology/approach

A review paper detailing the developments of micro‐drill bit and PCB mechanical drilling techniques.

Findings

Mechanical drilling will still dominate the PCB hole processing methods. A design method on the basis of theoretical analysis, numerical simulation and experimental verifications is proved as an applicable way to improve the drill bit design efficiency. Newly developed tungsten carbide, novel coating techniques and high‐performance steel‐shank micro‐drill bits are expected. Solutions of micro‐drill bits for high‐density interconnection, IC substrate flexible PCBs, halogen and lead‐free assembly compatible PCBs, as well as 2 mm shank diameter drill bit are worthy of being concerned.

Originality/value

The paper highlights the state‐of‐the‐art techniques of micro‐drill bit manufacturing and novel developed micro‐drill bit. The development direction of micro‐drill bit in the future is concluded.

Details

Circuit World, vol. 33 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 11 May 2012

Lianyu Fu and Qiang Guo

The purpose of this paper is to present a method and a system for measuring drill bit temperature on‐line in the micro drilling process and to characterize drilling processes via…

Abstract

Purpose

The purpose of this paper is to present a method and a system for measuring drill bit temperature on‐line in the micro drilling process and to characterize drilling processes via drill bit temperature.

Design/methodology/approach

The drill bit temperature measurement system was first established by the utilization of an infrared camera. Then the drill bit temperature in a drilling cycle was characterized. The temperatures of an ultra‐small micro drill bit and a coated drill bit were measured and compared.

Findings

The temperature of an ultra‐small drill bit can be measured on‐line via the proposed temperature measurement system. The drilling process can be characterized by the drill bit temperature. The drill bit temperature decreased when a coated drill bit was used.

Originality/value

The paper highlights key points for measuring the drill bit temperature on‐line by an infrared camera and characterizes PCB drilling processes by measuring the drill bit temperature.

Details

Circuit World, vol. 38 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 24 August 2010

Lianyu Fu and Qiang Guo

The paper aims to present key points regarding the development of an ultra‐small micro drill bit for packaging substrate hole processing.

Abstract

Purpose

The paper aims to present key points regarding the development of an ultra‐small micro drill bit for packaging substrate hole processing.

Design/methodology/approach

Key points for the development of ultra‐small drill bits are presented. These are based on a study of the influential mechanisms of micro drill bit material properties, key parameters and coating techniques on the behaviours of micro drill bit. Experiments were conducted to verify the drilling capability of the developed ultra‐small micro drill bits.

Findings

The material properties of micro drill bits are of great importance in ensuring the performance. Helix angle, primary face angle and point angle are three key parameters that significantly influence drill bit behaviour. Computer‐aided engineering analysis, temperature monitoring and video monitoring techniques in high‐speed drilling are useful tools for achieving the optimal design of ultra‐small drill bits. Using coating technology on ultra‐small drill bits can improve their hit limits by nearly four times.

Originality/value

The paper highlights key points to consider when developing ultra‐small micro drill bits. The presented points can provide an overall understanding of the challenges and solutions during ultra‐small micro drill bit design. Additionally, this paper presents a solution for packaging substrate ultra‐small hole processing by mechanical drilling.

Details

Circuit World, vol. 36 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 25 September 2024

Jinzhou Li, Jie Ma, Yujie Hu, Li Zhang, Zhijie Liu and Shiying Sun

This study aims to tackle control challenges in soft robots by proposing a visually-guided reinforcement learning approach. Precise tip trajectory tracking is achieved for a soft…

Abstract

Purpose

This study aims to tackle control challenges in soft robots by proposing a visually-guided reinforcement learning approach. Precise tip trajectory tracking is achieved for a soft arm manipulator.

Design/methodology/approach

A closed-loop control strategy uses deep learning-powered perception and model-free reinforcement learning. Visual feedback detects the arm’s tip while efficient policy search is conducted via interactive sample collection.

Findings

Physical experiments demonstrate a soft arm successfully transporting objects by learning coordinated actuation policies guided by visual observations, without analytical models.

Research limitations/implications

Constraints potentially include simulator gaps and dynamical variations. Future work will focus on enhancing adaptation capabilities.

Practical implications

By eliminating assumptions on precise analytical models or instrumentation requirements, the proposed data-driven framework offers a practical solution for real-world control challenges in soft systems.

Originality/value

This research provides an effective methodology integrating robust machine perception and learning for intelligent autonomous control of soft robots with complex morphologies.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 5 December 2018

Lin Liu, Hongyu Su, Xue Li, Yanan Wang, Qiang Zhang and Jianhua Qian

This paper aims to evaluate the inhibitive effect and adsorption behavior of the 2-amino-5-thiol-1,3,4-thiadiazole vanillin (A) on copper in 3 per cent NaCl solution.

Abstract

Purpose

This paper aims to evaluate the inhibitive effect and adsorption behavior of the 2-amino-5-thiol-1,3,4-thiadiazole vanillin (A) on copper in 3 per cent NaCl solution.

Design/methodology/approach

A thiazole Schiff bases were synthesized, named, 2-amino-5-thiol-1,3,4-thiadiazole vanillin (A), which was fabricated respectively on copper surface by the molecular self-assembled. Evaluation was carried out by electrochemical measurement and surface analysis techniques. Measurement of static friction coefficient scanning electron microscopy and Contact angle analysis were applied, and it is finally confirmed the existence of the adsorbed film. The inhibitive mechanism of A was evaluated by means of quantitative calculation and molecular dynamics simulation.

Findings

The electrochemical measurement indicated that the self-assembled molecular film can effectively inhibit the corrosion of copper sheet, when the concentration was 15 mmol⋅L−1 and the assembly time was 6 h, the corrosion inhibition effect was the best, reaching as high as 97.5 per cent. Scanning electron microscopy results showed that the Schiff base compound forms a protective film on the surface of the copper, which effectively blocks the transfer of corrosion particles to the metal substrate, thereby inhibiting the occurrence of corrosion. Adsorption behavior of A followed the Langmuir’s adsorption isotherm and attributed to mixed-type adsorption. The results of Quantitative calculation and molecular dynamics simulation showed that A was adsorbed on Cu (111) surface in parallel.

Research limitations/implications

In this study, the corrosion inhibition properties of Schiff base film were investigated by combining theory with experiment. Theoretical calculation is helpful to guide the synthesis of efficient and environmentally friendly corrosion inhibitors.

Practical implications

The damage caused by metal corrosion is great. The self-assembled Schiff base membrane synthesized in this paper is simple and compact, and the corrosion inhibition efficiency of copper in 3 per cent NaCl solution is 97.5 per cent.

Social implications

Inhibition of metal corrosion can better save energy and reduce economic losses.

Originality/value

The synthesized Schiff base was prepared on the copper surface by the molecular self-assembled. The Schiff base membrane has a good corrosion inhibition effect on copper in 3 per cent NaCl solution, and the corrosion inhibition efficiency is up to 97.5 per cent.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 April 2021

Huiliang Cao, Rang Cui, Wei Liu, Tiancheng Ma, Zekai Zhang, Chong Shen and Yunbo Shi

To reduce the influence of temperature on MEMS gyroscope, this paper aims to propose a temperature drift compensation method based on variational modal decomposition (VMD)…

Abstract

Purpose

To reduce the influence of temperature on MEMS gyroscope, this paper aims to propose a temperature drift compensation method based on variational modal decomposition (VMD), time-frequency peak filter (TFPF), mind evolutionary algorithm (MEA) and BP neural network.

Design/methodology/approach

First, VMD decomposes gyro’s temperature drift sequence to obtain multiple intrinsic mode functions (IMF) with different center frequencies and then Sample entropy calculates, according to the complexity of the signals, they are divided into three categories, namely, noise signals, mixed signals and temperature drift signals. Then, TFPF denoises the mixed-signal, the noise signal is directly removed and the denoised sub-sequence is reconstructed, which is used as training data to train the MEA optimized BP to obtain a temperature drift compensation model. Finally, the gyro’s temperature characteristic sequence is processed by the trained model.

Findings

The experimental result proved the superiority of this method, the bias stability value of the compensation signal is 1.279 × 10–3°/h and the angular velocity random walk value is 2.132 × 10–5°/h/vHz, which is improved compared to the 3.361°/h and 1.673 × 10–2°/h/vHz of the original output signal of the gyro.

Originality/value

This study proposes a multi-dimensional processing method, which treats different noises separately, effectively protects the low-frequency characteristics and provides a high-precision training set for drift modeling. TFPF can be optimized by SEVMD parallel processing in reducing noise and retaining static characteristics, MEA algorithm can search for better threshold and connection weight of BP network and improve the model’s compensation effect.

Content available
Article
Publication date: 18 November 2013

Martin Goosey

211

Abstract

Details

Circuit World, vol. 39 no. 4
Type: Research Article
ISSN: 0305-6120

1 – 10 of 15