Search results
1 – 2 of 2Yingying Chi, Lianghua Chen, Yufei Hu, Yafei Zu, Xue Peng and Jinpei Liu
Green technology, characterized by its environmentally friendly attributes and sustainable practices, has emerged as a crucial tool in harmonizing the economic and ecological…
Abstract
Purpose
Green technology, characterized by its environmentally friendly attributes and sustainable practices, has emerged as a crucial tool in harmonizing the economic and ecological benefits. However, the challenge lies in selecting the most effective strategies for acquiring green technology. This paper aims to explore how chemical enterprises choose green technology acquisition strategies across diverse scenarios.
Design/methodology/approach
Considering the influence of competition effects, spillover effects and their interactions on selecting green technology acquisition strategies, this paper develops three decision models (independent R&D, cooperative R&D and technology introduction). Drawing on the duopoly game theory as its theoretical framework, this paper delves into the examination of the economic and environmental benefits within distinct scenarios.
Findings
Cooperative R&D excels in promoting green technology R&D when spillover effects are strong, while independent R&D demonstrates superiority when spillover effects are weak. The threshold for the strength of spillover effects is related to competition effects. Additionally, cooperative R&D typically yields greater financial advantages than independent R&D and technology introduction. Moreover, the economic and environmental benefits may not be optimized simultaneously. Only enterprises that satisfy low competition and spillover effects as well as high competition and spillover effects, can achieve win-win economic and environmental benefits.
Originality/value
Although green technology R&D and introduction are alternative strategies, they have typically been considered separately in prior literature. This study attempts to incorporate green technology R&D and introduction into a strategic system to investigate the selection of green technology acquisition strategies, taking into account competition effects, spillover effects and their interactions.
Details
Keywords
Na Pang, Li Qian, Weimin Lyu and Jin-Dong Yang
In computational chemistry, the chemical bond energy (pKa) is essential, but most pKa-related data are submerged in scientific papers, with only a few data that have been…
Abstract
Purpose
In computational chemistry, the chemical bond energy (pKa) is essential, but most pKa-related data are submerged in scientific papers, with only a few data that have been extracted by domain experts manually. The loss of scientific data does not contribute to in-depth and innovative scientific data analysis. To address this problem, this study aims to utilize natural language processing methods to extract pKa-related scientific data in chemical papers.
Design/methodology/approach
Based on the previous Bert-CRF model combined with dictionaries and rules to resolve the problem of a large number of unknown words of professional vocabulary, in this paper, the authors proposed an end-to-end Bert-CRF model with inputting constructed domain wordpiece tokens using text mining methods. The authors use standard high-frequency string extraction techniques to construct domain wordpiece tokens for specific domains. And in the subsequent deep learning work, domain features are added to the input.
Findings
The experiments show that the end-to-end Bert-CRF model could have a relatively good result and can be easily transferred to other domains because it reduces the requirements for experts by using automatic high-frequency wordpiece tokens extraction techniques to construct the domain wordpiece tokenization rules and then input domain features to the Bert model.
Originality/value
By decomposing lots of unknown words with domain feature-based wordpiece tokens, the authors manage to resolve the problem of a large amount of professional vocabulary and achieve a relatively ideal extraction result compared to the baseline model. The end-to-end model explores low-cost migration for entity and relation extraction in professional fields, reducing the requirements for experts.
Details