Jingrui Ge, Kristoffer Vandrup Sigsgaard, Bjørn Sørskot Andersen, Niels Henrik Mortensen, Julie Krogh Agergaard and Kasper Barslund Hansen
This paper proposes a progressive, multi-level framework for diagnosing maintenance performance: rapid performance health checks of key performance for different equipment groups…
Abstract
Purpose
This paper proposes a progressive, multi-level framework for diagnosing maintenance performance: rapid performance health checks of key performance for different equipment groups and end-to-end process diagnostics to further locate potential performance issues. A question-based performance evaluation approach is introduced to support the selection and derivation of case-specific indicators based on diagnostic aspects.
Design/methodology/approach
The case research method is used to develop the proposed framework. The generic parts of the framework are built on existing maintenance performance measurement theories through a literature review. In the case study, empirical maintenance data of 196 emergency shutdown valves (ESDVs) are collected over a two-year period to support the development and validation of the proposed approach.
Findings
To improve processes, companies need a separate performance measurement structure. This paper suggests a hierarchical model in four layers (objective, domain, aspect and performance measurement) to facilitate the selection and derivation of indicators, which could potentially reduce management complexity and help prioritize continuous performance improvement. Examples of new indicators are derived from a case study that includes 196 ESDVs at an offshore oil and gas production plant.
Originality/value
Methodological approaches to deriving various performance indicators have rarely been addressed in the maintenance field. The proposed diagnostic framework provides a structured way to identify and locate process performance issues by creating indicators that can bridge generic evaluation aspects and maintenance data. The framework is highly adaptive as data availability functions are used as inputs to generate indicators instead of passively filtering out non-applicable existing indicators.
Details
Keywords
Kristoffer Vandrup Sigsgaard, Julie Krogh Agergaard, Niels Henrik Mortensen, Kasper Barslund Hansen and Jingrui Ge
The study consists of a literature study and a case study. The need for a method via which to handle instruction complexity was identified in both studies. The proposed method was…
Abstract
Purpose
The study consists of a literature study and a case study. The need for a method via which to handle instruction complexity was identified in both studies. The proposed method was developed based on methods from the literature and experience from the case company.
Design/methodology/approach
The purpose of the study presented in this paper is to investigate how linking different maintenance domains in a modular maintenance instruction architecture can help reduce the complexity of maintenance instructions.
Findings
The proposed method combines knowledge from the operational and physical domains to reduce the number of instruction task variants. In a case study, the number of instruction task modules was reduced from 224 to 20, covering 83% of the maintenance performed on emergency shutdown valves.
Originality/value
The study showed that the other methods proposed within the body of maintenance literature mainly focus on the development of modular instructions, without the reduction of complexity and non-value-adding variation observed in the product architecture literature.
Details
Keywords
Jingrui Ge, Kristoffer Vandrup Sigsgaard, Julie Krogh Agergaard, Niels Henrik Mortensen, Waqas Khalid and Kasper Barslund Hansen
This paper proposes a heuristic, data-driven approach to the rapid performance evaluation of periodic maintenance on complex production plants. Through grouping, maintenance…
Abstract
Purpose
This paper proposes a heuristic, data-driven approach to the rapid performance evaluation of periodic maintenance on complex production plants. Through grouping, maintenance interval (MI)-based evaluation and performance assessment, potential nonvalue-adding maintenance elements can be identified in the current maintenance structure. The framework reduces management complexity and supports the decision-making process for further maintenance improvement.
Design/methodology/approach
The evaluation framework follows a prescriptive research approach. The framework is structured in three steps, which are further illustrated in the case study. The case study utilizes real-life data to verify the feasibility and effectiveness of the proposed framework.
Findings
Through a case study conducted on 9,538 pieces of equipment from eight offshore oil and gas production platforms, the results show considerable potential for maintenance performance improvement, including up to a 23% reduction in periodic maintenance hours.
Research limitations/implications
The problem of performance evaluation under limited data availability has barely been addressed in the literature on the plant level. The proposed framework aims to provide a quantitative approach to reducing the structural complexity of the periodic maintenance evaluation process and can help maintenance professionals prioritize the focus on maintenance improvement among current strategies.
Originality/value
The proposed framework is especially suitable for initial performance assessment in systems with a complex structure, limited maintenance records and imperfect data, as it reduces management complexity and supports the decision-making process for further maintenance improvement. A similar application has not been identified in the literature.
Details
Keywords
Julie Krogh Agergaard, Kristoffer Vandrup Sigsgaard, Niels Henrik Mortensen, Jingrui Ge and Kasper Barslund Hansen
The purpose of this paper is to investigate the impact of early-stage maintenance clustering. Few researchers have previously studied early-stage maintenance clustering…
Abstract
Purpose
The purpose of this paper is to investigate the impact of early-stage maintenance clustering. Few researchers have previously studied early-stage maintenance clustering. Experience from product and service development has shown that early stages are critical to the development process, as most decisions are made during these stages. Similarly, most maintenance decisions are made during the early stages of maintenance development. Developing maintenance for clustering is expected to increase the potential of clustering.
Design/methodology/approach
A literature study and three case studies using the same data set were performed. The case studies simulate three stages of maintenance development by clustering based on the changes available at each given stage.
Findings
The study indicates an increased impact of maintenance clustering when clustering already in the first maintenance development stage. By performing clustering during the identification phase, 4.6% of the planned work hours can be saved. When clustering is done in the planning phase, 2.7% of the planned work hours can be saved. When planning is done in the scheduling phase, 2.4% of the planned work hours can be saved. The major difference in potential from the identification to the scheduling phase came from avoiding duplicate, unnecessary and erroneous work.
Originality/value
The findings from this study indicate a need for more studies on early-stage maintenance clustering, as few others have studied this.