Search results
1 – 3 of 3Peng Li, Yuhua Wang, Jingru Hu and Jianmin Zhou
– The purpose of this study which resulted in this work is to propose an optimization method of sensors distribution for structural impact localization.
Abstract
Purpose
The purpose of this study which resulted in this work is to propose an optimization method of sensors distribution for structural impact localization.
Design/methodology/approach
This paper presents a multi-objective optimization study of a novel sensors distribution technique, where two optimization objective functions are considered: sensors number and sensors location optimization performance index. In addition, the finite element analysis, the time-frequency transform and the principal component analysis are combined to quantize the above objective functions. The non-dominated sorting genetic algorithm II (NSGA-II) is used to acquire Pareto solutions.
Findings
The effectiveness of this method is validated through a prototype laboratory called the piezoelectric intelligent structure where promising results are obtained.
Originality/value
An optimization method of this novel sensors distribution technique is built and produced a set of efficiency solutions for the real-world problem of impact localization where two conflicting objectives are involved.
Details
Keywords
Run Yang, Jingru Li, Taiyun Zhu, Di Hu and Erbao Dong
Gas-insulated switchgear (GIS) stands as a pivotal component in power systems, susceptible to partial discharge occurrences. Nevertheless, manual inspection proves…
Abstract
Purpose
Gas-insulated switchgear (GIS) stands as a pivotal component in power systems, susceptible to partial discharge occurrences. Nevertheless, manual inspection proves labor-intensive, exhibits a low defect detection rate. Conventional inspection robots face limitations, unable to perform live line measurements or adapt effectively to diverse environmental conditions. This paper aims to introduce a novel solution: the GIS ultrasonic partial discharge detection robot (GBOT), designed to assume the role of substation personnel in inspection tasks.
Design/methodology/approach
GBOT is a mobile manipulator system divided into three subsystems: autonomous location and navigation, vision-guided and force-controlled manipulator and data detection and analysis. These subsystems collaborate, incorporating simultaneous localization and mapping, path planning, target recognition and signal processing, admittance control. This paper also introduces a path planning method designed to adapt to the substation environment. In addition, a flexible end effector is designed for full contact between the probe and the device.
Findings
The robot fulfills the requirements for substation GIS inspections. It can conduct efficient and low-cost path planning with narrow passages in the constructed substation map, realizes a sufficiently stable detection contact and perform high defect detection rate.
Practical implications
The robot mitigates the labor intensity of grid maintenance personnel, enhances inspection efficiency and safety and advances the intelligence and digitization of power equipment maintenance and monitoring. This research also provides valuable insights for the broader application of mobile manipulators in diverse fields.
Originality/value
The robot is a mobile manipulator system used in GIS detection, offering a viable alternative to grid personnel for equipment inspections. Comparing with the previous robotic systems, this system can work in live electrical detection, demonstrating robust environmental adaptability and superior efficiency.
Details
Keywords
Changlong Ye, Jingru Shao, Yong Liu and Suyang Yu
Omnidirectional mobile robots with a special type of wheel structure can realize flexible motion with all three degrees of freedom in a plane. But the driving method brings large…
Abstract
Purpose
Omnidirectional mobile robots with a special type of wheel structure can realize flexible motion with all three degrees of freedom in a plane. But the driving method brings large disturbance, which affects motion accuracy and stability. This study aims to improve the motion control accuracy of the omnidirectional mobile platform with MY3 wheels (MY3-OMR), a new fuzzy active disturbance rejection control (FADRC) method with adaptivity is proposed.
Design/methodology/approach
Based on the basic mechanical structure and drive characteristics of MY3-OMR, the dynamics model of the system is established. The linear active disturbance rejection control (LADRC) system is designed to reduce the interference of nonlinear factors in this dynamics model. A fuzzy controller is introduced to realize the online adjustment of the parameters of the LADRC, which further improves the anti-disturbance performance of the system.
Findings
The control method proposed in this paper is compared and analyzed with other methods by simulation and experiment. Results show that the proposed method has better tracking and robustness, which effectively improves the control accuracy of trajectory tracking of MY3-OMR.
Originality/value
A FADRC method with adaptivity is proposed by combining fuzzy control and LADRC. The motion accuracy and anti-interference ability of the MY3-OMR are improved by this control method, which lays a foundation for the subsequent application of MY3-OMR.
Details