Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 16 April 2018

Jinglai Wu, Zhen Luo, Nong Zhang and Wei Gao

This paper aims to study the sampling methods (or design of experiments) which have a large influence on the performance of the surrogate model. To improve the adaptability of…

365

Abstract

Purpose

This paper aims to study the sampling methods (or design of experiments) which have a large influence on the performance of the surrogate model. To improve the adaptability of modelling, a new sequential sampling method termed as sequential Chebyshev sampling method (SCSM) is proposed in this study.

Design/methodology/approach

The high-order polynomials are used to construct the global surrogated model, which retains the advantages of the traditional low-order polynomial models while overcoming their disadvantage in accuracy. First, the zeros of Chebyshev polynomials with the highest allowable order will be used as sampling candidates to improve the stability and accuracy of the high-order polynomial model. In the second step, some initial sampling points will be selected from the candidates by using a coordinate alternation algorithm, which keeps the initial sampling set uniformly distributed. Third, a fast sequential sampling scheme based on the space-filling principle is developed to collect more samples from the candidates, and the order of polynomial model is also updated in this procedure. The final surrogate model will be determined as the polynomial that has the largest adjusted R-square after the sequential sampling is terminated.

Findings

The SCSM has better performance in efficiency, accuracy and stability compared with several popular sequential sampling methods, e.g. LOLA-Voronoi algorithm and global Monte Carlo method from the SED toolbox, and the Halton sequence.

Originality/value

The SCSM has good performance in building the high-order surrogate model, including the high stability and accuracy, which may save a large amount of cost in solving complicated engineering design or optimisation problems.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 6 July 2015

Zeyu Ma, Jinglai Wu, Yunqing Zhang and Ming Jiang

The purpose of this paper is to provide a new computational method based on the polynomial chaos (PC) expansion to identify the uncertain parameters of load sensing proportional…

191

Abstract

Purpose

The purpose of this paper is to provide a new computational method based on the polynomial chaos (PC) expansion to identify the uncertain parameters of load sensing proportional valve (LSPV), which is commonly used to improve the efficiency of brake system in heavy truck.

Design/methodology/approach

For this investigation, the mathematic model of LSPV is constructed in the form of state space equation. Then the estimation process is implemented relying on the experimental measurements. With the coefficients of the PC expansion obtained by the numerical implementation, the output observation function can be transformed into a linear and time-invariant form. The uncertain parameter recursively update functions based on Newton method can therefore be derived fit for computer calculation. To improve the estimation accuracy and stability, the Newton method is modified by employing the acceptance probability to escape from the local minima during the estimation process.

Findings

The accuracy and effectiveness of the proposed parameter estimation method are confirmed by model validation compared with other estimation methods. Meanwhile, the influence of measurement noise on the robustness of the estimation methods is taken into consideration, and it is shown that the estimation approach developed in this paper could achieve impressive stability without compromising the convergence speed and accuracy too much.

Originality/value

The model of LSPV is originally developed in this paper, and then the authors propose a novel effective strategy for recursively estimating uncertain parameters of complicate pneumatic system based on the PC theory.

Details

Engineering Computations, vol. 32 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 28 September 2022

Jiasi Sun, Jiali Bu, Jinglai Yang, Yanlong Hao and Hong Lang

Ball bearings in gas turbine have played a critical role in supporting heavy radial loads but with higher failure rates and repair costs. Therefore, the purpose of this study is…

140

Abstract

Purpose

Ball bearings in gas turbine have played a critical role in supporting heavy radial loads but with higher failure rates and repair costs. Therefore, the purpose of this study is to introduce and study a method for their failure analysis with an actual industrial example to guarantee operation reliability and safety.

Design/methodology/approach

Spectrometric oil analysis was used as an early abnormal wear indicator, based on which emergent in-use oil replacement was carried out to reduce the wear rate. However, with wear deterioration, further wear failure investigation was conducted by LaserNet Fines and ferrography to detect the imminent wear failure. Finally, with the assistance of elemental analysis of the typical wear particles, the root cause and worn components were determined by scanning electronic microscope and energy-dispersive X-ray spectroscopy.

Findings

The results have shown that an extraneous source led to wear failure, which later caused overheat between the outer bearing ring and ball. It is in accordance with visual inspection of the disassembled engine.

Originality/value

This method has specified the occasion under which the suitable measurement can be taken. It can achieve the rapid wear condition assessment allowing for root cause and worn parts identification. In addition, wear rate reduction by change of oil can be efficient for most of the time to avoid premature disassemble, especially with the possibility of contamination. It has provided experience to address similar industry-level practical wear failure analysis problems.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 3 of 3
Per page
102050