Search results

1 – 1 of 1
Article
Publication date: 2 July 2018

Jinghan Du, Haiyan Chen and Weining Zhang

In large-scale monitoring systems, sensors in different locations are deployed to collect massive useful time-series data, which can help in real-time data analytics and its…

Abstract

Purpose

In large-scale monitoring systems, sensors in different locations are deployed to collect massive useful time-series data, which can help in real-time data analytics and its related applications. However, affected by hardware device itself, sensor nodes often fail to work, resulting in a common phenomenon that the collected data are incomplete. The purpose of this study is to predict and recover the missing data in sensor networks.

Design/methodology/approach

Considering the spatio-temporal correlation of large-scale sensor data, this paper proposes a data recover model in sensor networks based on a deep learning method, i.e. deep belief network (DBN). Specifically, when one sensor fails, the historical time-series data of its own and the real-time data from surrounding sensor nodes, which have high similarity with a failure observed using the proposed similarity filter, are collected first. Then, the high-level feature representation of these spatio-temporal correlation data is extracted by DBN. Moreover, to determine the structure of a DBN model, a reconstruction error-based algorithm is proposed. Finally, the missing data are predicted based on these features by a single-layer neural network.

Findings

This paper collects a noise data set from an airport monitoring system for experiments. Various comparative experiments show that the proposed algorithms are effective. The proposed data recovery model is compared with several other classical models, and the experimental results prove that the deep learning-based model can not only get a better prediction accuracy but also get a better performance in training time and model robustness.

Originality/value

A deep learning method is investigated in data recovery task, and it proved to be effective compared with other previous methods. This might provide a practical experience in the application of a deep learning method.

Details

Sensor Review, vol. 39 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 1 of 1