Ruoxing Wang, Shoukun Wang, Junfeng Xue, Zhihua Chen and Jinge Si
This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged…
Abstract
Purpose
This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged robot. The autonomy of obstacle-surmounting is reflected in obstacle recognition based on multi-frame point cloud fusion.
Design/methodology/approach
In this paper, first, for the problem that the lidar on the robot cannot scan the point cloud of low-height obstacles, the lidar is driven to rotate by a 2D turntable to obtain the point cloud of low-height obstacles under the robot. Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping algorithm, fast ground segmentation algorithm and Euclidean clustering algorithm are used to recognize the point cloud of low-height obstacles and obtain low-height obstacle in-formation. Then, combined with the structural characteristics of the robot, the obstacle-surmounting action planning is carried out for two types of obstacle scenes. A segmented approach is used for action planning. Gait units are designed to describe each segment of the action. A gait matrix is used to describe the overall action. The paper also analyzes the stability and surmounting capability of the robot’s key pose and determines the robot’s surmounting capability and the value scheme of the surmounting control variables.
Findings
The experimental verification is carried out on the robot laboratory platform (BIT-6NAZA). The obstacle recognition method can accurately detect low-height obstacles. The robot can maintain a smooth posture to cross low-height obstacles, which verifies the feasibility of the adaptive obstacle-surmounting method.
Originality/value
The study can provide the theory and engineering foundation for the environmental perception of the unmanned platform. It provides environmental information to support follow-up work, for example, on the planning of obstacles and obstacles.
Details
Keywords
Bin Li, Shoukun Wang, Jinge Si, Yongkang Xu, Liang Wang, Chencheng Deng, Junzheng Wang and Zhi Liu
Dynamically tracking the target by unmanned ground vehicles (UGVs) plays a critical role in mobile drone recovery. This study aims to solve this challenge under diverse random…
Abstract
Purpose
Dynamically tracking the target by unmanned ground vehicles (UGVs) plays a critical role in mobile drone recovery. This study aims to solve this challenge under diverse random disturbances, proposing a dynamic target tracking framework for UGVs based on target state estimation, trajectory prediction, and UGV control.
Design/methodology/approach
To mitigate the adverse effects of noise contamination in target detection, the authors use the extended Kalman filter (EKF) to improve the accuracy of locating unmanned aerial vehicles (UAVs). Furthermore, a robust motion prediction algorithm based on polynomial fitting is developed to reduce the impact of trajectory jitter caused by crosswinds, enhancing the stability of drone trajectory prediction. Regarding UGV control, a dynamic vehicle model featuring independent front and rear wheel steering is derived. Additionally, a linear time-varying model predictive control algorithm is proposed to minimize tracking errors for the UGV.
Findings
To validate the feasibility of the framework, the algorithms were deployed on the designed UGV. Experimental results demonstrate the effectiveness of the proposed dynamic tracking algorithm of UGV under random disturbances.
Originality/value
This paper proposes a tracking framework of UGV based on target state estimation, trajectory prediction and UGV predictive control, enabling the system to achieve dynamic tracking to the UAV under multiple disturbance conditions.
Details
Keywords
Xiaoyang Wang, Jiusheng Bao, Jinge Liu, Yan Yin, Tonggang Liu and Shaodi Zhao
This paper aims to develop of magnetic field controlled friction braking technology, a novel brake friction material with magnetic was designed and prepared in this paper.
Abstract
Purpose
This paper aims to develop of magnetic field controlled friction braking technology, a novel brake friction material with magnetic was designed and prepared in this paper.
Design/methodology/approach
The permalloy, a soft magnetic material, was selected as an additive to design and prepare the magnetic brake material. The friction, wear performance and permeability of each brake pads were investigated by experiments. By choosing the performance of friction coefficient fluctuation, friction coefficient deviation and mean wear rate as optimization parameters, the formulation of the magnetic friction material was optimized based on Fuzzy theory by using analytic hierarchy process methods and SPSS software.
Findings
The results showed that the developed soft magnetic friction material has not only superior friction coefficient, permeability and inferior wear rate but also good physical and mechanical properties.
Originality/value
Permalloy powder was added to the formulation of friction material to achieve a new functional friction material with high magnetic permeability. It is believed that this research will be of great theoretical and practical significance to develop both new brake materials and active control technology of the braking process in the future.