Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 11 June 2018

Yuming Guan, Jingbo Mu, Hongwei Che, Xiaoliang Zhang and Zhixiao Zhang

The purpose of this study is to design carbon electrode materials for high performance electric double-layer capacitors (EDLCs) with pores that are large enough and have suitable…

177

Abstract

Purpose

The purpose of this study is to design carbon electrode materials for high performance electric double-layer capacitors (EDLCs) with pores that are large enough and have suitable pore size distribution for the electrolyte to access completely to improve EDLCs’ electrochemical performance.

Design/methodology/approach

This study develop an improved traditional KOH activation method, and a series of micro-meso hierarchical porous carbons have been successfully prepared from phenol formaldehyde resin by combining polyethylene glycol (PEG) and conventional KOH activation.

Findings

As evidenced by N2 adsorption/desorption tests, the obtained samples present Types IV and I-IV hybrid shape isotherms compared with KOH-activated resin (typical of Type I). The sample AC2-7-1, which the addition quantity of PEG is 25 per cent PF (weight ration) activated at 700? For 1 h is considered as the optimum preparation condition. It exhibits the highest specific capacitance value of 240 F/g in 30 wt% KOH aqueous electrolytes because of its higher specific surface area (2085 m2/g), greater pore volume (1.08 cm3/g) and the maximum mesoporosity (43 per cent). In addition, the capacity decay of this material is only 3.1 per cent after 1000 cycles.

Originality/value

The materials that are rich in micropores and mesopores show great potential in EDLC capacitors, particularly for applications where high power output and good high-frequency capacitive performances are required.

Details

World Journal of Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 1 of 1
Per page
102050