Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 19 December 2022

Hsin-Yi Lai and Jing-Hao Kang

This study aims to solve the problems of low flow rate and low efficiency of micropumps in high-frequency applications. This micropump system was proposed to meet the requirements…

94

Abstract

Purpose

This study aims to solve the problems of low flow rate and low efficiency of micropumps in high-frequency applications. This micropump system was proposed to meet the requirements of 1–5 ml/min for microthrusters or drug delivery devices.

Design/methodology/approach

In this paper, a comprehensive analysis indicator and numerical procedure were disclosed and used to demonstrate the fluid dynamic characteristics and performance of a micropump. Accordingly, the reliability of the two-way coupling calculation was ensured through mutual verification of the real structure and the numerical system.

Findings

The research results indicate that the Polydimethylsiloxane (PDMS) microchannel can realize the contraction and expansion mechanism, allowing the fluid to generate different levels of pressure gradient during the working stroke and also enhancing the characteristics of energy consumption and storage of the flow field.

Originality/value

The pressure gradient between the fluid and PDMS microchannel can facilitate the improvement of the fluid backflow in a micropump. Therefore, in terms of performance improvement, the PDMS micropump increased the maximum backflow and optimum efficiency by approximately 50 and 90%, respectively.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 24 August 2018

Xianhai Pang, Haijun Zhang, Shuhong Wang and Hao Jing

The purpose of this paper is to study the saturation and nonlinear performance of magnetic field in the air gap of switched reluctance motor (SRM).

172

Abstract

Purpose

The purpose of this paper is to study the saturation and nonlinear performance of magnetic field in the air gap of switched reluctance motor (SRM).

Design/methodology/approach

The analytical method of sub-domain combined with the saturation compensation method is used to determine the nonlinear distribution of air gap magnetic field in SRM. Also, the resolutions of the two-dimensional (2D) Laplace’s equation and Poisson’s equation in polar coordinates are used to obtain the simplified expression of magnetic flux density.

Findings

For verifying the effectiveness of analytical model, the results are compared with those obtained from the 2D finite element method (FEM). The influence of magnetic saturation is taken into account by associating the sub-domain analysis result with the nonlinear B-H properties of stator and rotor iron. The magnetic flux density in radial and tangential direction considering the saturation effect may be calculated accurately. It can be seen that one can easily determine the linear analytical results accurately, whereas it is difficult to determine the magnetic flux density with saturation influence; especially at some local positions, there is a larger difference between analytical and FE model due to the complex boundary conditions.

Practical implications

This paper presents the development and optimization design of high-performance SRM.

Originality/value

The magnetic saturation may be taken into account for the SRM and analytical models support to simulated system performance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 24 May 2023

Xu Zhang, Hao Jing, Qing Zhang, Ruijun Zhang and Lixin Liu

This paper aims to guide the implementation of noise reduction measures in hoistway and reduce the aerodynamic noise generated by elevator operation, this paper aims to propose an…

98

Abstract

Purpose

This paper aims to guide the implementation of noise reduction measures in hoistway and reduce the aerodynamic noise generated by elevator operation, this paper aims to propose an aerodynamic noise analysis method that can solve the flow field in hoistway.

Design/methodology/approach

A turbulence-acoustic model solving the flow field in a hoistway and a numerical wind hoistway model of the ultra-high-speed elevator were established by using large eddy simulation (LES) and Curle acoustic theory.

Findings

The characteristics of pulsating flow field and aerodynamic noise around ultra-high-speed elevator are analyzed. The asymmetric characteristics of the flow field could be observed using the turbulent kinetic energy and the instantaneous vortexes in the wind hoistway model. Vortex shedding, air flow separation and recombination around the car were the key factors for aerodynamic noise generation. The sound pressure level was approximately linear to the logarithm of car speed. The increase of car deflection angle in a certain range would reduce the peak frequency of wake noise and increase the sound pressure level (SPL) value.

Originality/value

This paper provides important guidance for researches studying the aerodynamic noise in the hoistway and the technical personnel that look for the reduction measures, which greatly improves the shortcomings in the numerical simulation of the aerodynamic noise of the hoistway.

Details

Engineering Computations, vol. 40 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 3 of 3
Per page
102050