Search results
1 – 10 of over 7000Chengxi Zhang, Jin Wu, Yulong Huang, Yu Jiang, Ming-zhe Dai and Mingjiang Wang
Recent spacecraft attitude control systems tend to use wireless communication for cost-saving and distributed mission purposes while encountering limited communication resources…
Abstract
Purpose
Recent spacecraft attitude control systems tend to use wireless communication for cost-saving and distributed mission purposes while encountering limited communication resources and data exposure issues. This paper aims to study the attitude control problem with low communication frequency under the sampled-data.
Design/methodology/approach
The authors propose constructive control system structures based on quantization and event-triggered methods for intra-spacecraft and multi-spacecraft systems, and they also provide potential solutions to shield the control system's data security. The proposed control architectures can effectively save communication resources for both intra-spacecraft and multi-spacecraft systems.
Findings
The proposed control architectures no longer require sensors with trigger-ing mechanism and can achieve distributed control schemes. This paper also provides proposals of employing the public key encryption to secure the data in control-loop, which is transmitted by the event-triggered control mechanism.
Practical implications
Spacecraft attempts to use wireless communication, yet the attitude control system does not follow up promptly to accommodate these variations. Compared with existing approaches, the proposed control structures can save communication resources of control-loop in multi-sections effectively, and systematically, by rationally configuring the location of quantization and event-triggered mechanisms.
Originality/value
This paper presents several new control schemes and a necessary condition for the employment of encryption algorithms for control systems based on event-based communication.
Details
Keywords
Chengxi Zhang, Jin Wu, Ran Sun, Mingjiang Wang and Dechao Ran
The purpose of this paper is to study the general actuator modeling in spacecraft attitude control systems.
Abstract
Purpose
The purpose of this paper is to study the general actuator modeling in spacecraft attitude control systems.
Design/methodology/approach
The proposed module in this paper provides various non-ideal factors such as the second-order dynamic time response, time-delay, bias torques, dead-zones and saturation. The actuator module can make the simulation as close to the practical situation as possible.
Findings
This paper presents a practical integrated module for the simulation of attitude control algorithms. Based on theoretical modeling, we give simulation modules and numerical examples. The proposed model can be directly used in spacecraft control simulation. Instead of considering only a few of them, it makes the simulation more convincing. Though it may not be perfect, it is better than totally ignoring the actuator dynamics.
Originality/value
The authors provide an integrated actuator model for spacecraft attitude control simulation, considering as many nonlinear factors as possible once time.
Details
Keywords
Changhua Liu, Jide Qian, Zuocai Wang and Jin Wu
For fixed-wing micro air vehicles, the attitude determination is usually produced by the horizon/Global Navigation Satellite System (GNSS) in which the GNSS provides yaw…
Abstract
Purpose
For fixed-wing micro air vehicles, the attitude determination is usually produced by the horizon/Global Navigation Satellite System (GNSS) in which the GNSS provides yaw estimates, while roll and pitch are computed using horizon sensors. However, the attitude determination has been independently obtained from the two sensors, which will result in insufficient usage of data. Also, when implementing attitude determination algorithms on embedded platforms, the computational resources are highly restricted. This paper aims to propose a computationally efficient linear Kalman filter to solve the problem.
Design/methodology/approach
The observation model is in the form of a least-square optimization composed by GNSS and horizontal measurements. Analytical quaternion solution along with its covariance is derived to significantly speed up on-chip computation.
Findings
The reconstructed attitude from Horizon/GNSS is integrated with quaternion kinematic equation from gyroscopic data that builds up a fast linear Kalman filter. The proposed filter does not involve coupling effects presented in existing works and will be more robust encountering bad GNSS measurements.
Originality/value
Electronic systems are designed on a real-world fixed-wing plane. Experiments are conducted on this platform that show comparisons on the accuracy and computation execution time of the proposed method and existing representatives. The results indicate that the proposed algorithm is accurate and much faster computation speed in studied scenarios.
Details
Keywords
Weijia Lu, Chengxi Zhang, Fei Liu, Jin Wu, Jihe Wang and Lining Tan
This paper aims to investigate the relative translational control for multiple spacecraft formation flying. This paper proposes an engineering-friendly, structurally simple, fast…
Abstract
Purpose
This paper aims to investigate the relative translational control for multiple spacecraft formation flying. This paper proposes an engineering-friendly, structurally simple, fast and model-free control algorithm.
Design/methodology/approach
This paper proposes a tanh-type self-learning control (SLC) approach with variable learning intensity (VLI) to guarantee global convergence of the tracking error. This control algorithm utilizes the controller's previous control information in addition to the current system state information and avoids complicating the control structure.
Findings
The proposed approach is model-free and can obtain the control law without accurate modeling of the spacecraft formation dynamics. The tanh function can tune the magnitude of the learning intensity to reduce the control saturation behavior when the tracking error is large.
Practical implications
This algorithm is model-free, robust to perturbations such as disturbances and system uncertainties, and has a simple structure that is very conducive to engineering applications.
Originality/value
This paper verified the control performance of the proposed algorithm for spacecraft formation in the presence of disturbances by simulation and achieved high steady-state accuracy and response speed over comparisons.
Details
Keywords
Jin Wu, Ming Liu, Chengxi Zhang, Yulong Huang and Zebo Zhou
Autonomous orbit determination using geomagnetic measurements is an important backup technique for safe spacecraft navigation with a mere magnetometer. The geomagnetic model is…
Abstract
Purpose
Autonomous orbit determination using geomagnetic measurements is an important backup technique for safe spacecraft navigation with a mere magnetometer. The geomagnetic model is used for the state estimation of orbit elements, but this model is highly nonlinear. Therefore, many efforts have been paid to developing nonlinear filters based on extended Kalman filter (EKF) and unscented Kalman filter (UKF). This paper aims to analyze whether to use UKF or EKF in solving the geomagnetic orbit determination problem and try to give a general conclusion.
Design/methodology/approach
This paper revisits the problem and from both the theoretical and engineering results, the authors show that the EKF and UKF show identical estimation performances in the presence of nonlinearity in the geomagnetic model.
Findings
While EKF consumes less computational time, the UKF is computationally inefficient but owns better accuracy for most nonlinear models. It is also noted that some other navigation techniques are also very similar with the geomagnetic orbit determination.
Practical implications
The intrinsic reason of such equivalence is because of the orthogonality of the spherical harmonics which has not been discovered in previous studies. Thus, the applicability of the presented findings are not limited only to the major problem in this paper but can be extended to all those schemes with spherical harmonic models.
Originality/value
The results of this paper provide a fact that there is no need to choose UKF as a preferred candidate in orbit determination. As UKF achieves almost the same accuracy as that of EKF, its loss in computational efficiency will be a significant obstacle in real-time implementation.
Details
Keywords
Chengxi Zhang, Peng Dong, Henry Leung, Jin Wu and Kai Shen
This paper aims to investigate the attitude regulation for spacecraft in the presence of time-varying inertia uncertainty and exogenous disturbances.
Abstract
Purpose
This paper aims to investigate the attitude regulation for spacecraft in the presence of time-varying inertia uncertainty and exogenous disturbances.
Design/methodology/approach
The high gain approaches are typically used in existing researches for theoretical advantages, bringing better performance but sensitive to parameter selection, making the controller conservative. A reset-control policy is presented to achieve the spacecraft attitude control with easy control parameter tuning.
Findings
The reset-control policy guarantees satisfying control performance despite using performance tuning function and saturation function besides reducing the conservativeness of the controller, thus reducing the effort in tuning control parameters.
Originality/value
Notably, the adaptive function owns a reset mechanism, which is reset to a preset condition when the controlled variable crosses zero. The mathematical analysis also shows the system trajectory can converge to a set centered at the origin.
Details
Keywords
Chengxi Zhang, Jin Wu, Ming-Zhe Dai, Bo Li and Mingjiang Wang
The purpose of this paper is to investigate the attitude cooperation control of multi-spacecraft with in-continuous communication.
Abstract
Purpose
The purpose of this paper is to investigate the attitude cooperation control of multi-spacecraft with in-continuous communication.
Design/methodology/approach
A decentralized state-irrelevant event-triggered control policy is proposed to reduce control updating frequency and further achieve in-continuous communication by introducing a self-triggered mechanism.
Findings
Each spacecraft transmits data independently, without the requirement for the whole system to communicate simultaneously. The local predictions and self-triggered mechanism avoid continuous monitoring of the triggering condition.
Research limitations/implications
This investigation is suitable for small Euler angle conditions.
Practical implications
The control policy based on event-triggered communication can provide potential solutions for saving communication resources.
Originality/value
This investigation uses event- and self-triggered policy to achieve in-communication for the multi-spacecraft system.
Details
Keywords
Chengxi Zhang, Hui-Jie Sun, Jin Wu, Zhongyang Fei, Yu Jiang and Guanhua Zhang
This paper aims to study the attitude control problem with mutating orbital rate and actuator fading.
Abstract
Purpose
This paper aims to study the attitude control problem with mutating orbital rate and actuator fading.
Design/methodology/approach
To avoid malicious physical attacks and hide itself, the spacecraft may irregularly switch its orbit altitude within a specific range, which will bring about variations in orbital rate, thereby causing mutations in the attitude dynamics model. The actuator faults will also cause changes in system dynamics. Both factors affect the control performance. First, this paper determines the potential switching orbits. Then under different conditions, design controllers that can accommodate actuator faults according to the statistical law of actuator fading.
Findings
This paper, to the best of the authors’ knowledge, for the first time, introduces the Markovian jump framework to model the possible unexpected mutating of orbital rate and actuator fading of spacecraft and then designs a novel control policy to solve the attitude control problem.
Practical implications
This paper also provides the algorithm design processes in detail. A comparative numerical simulation is given to verify the effectiveness of the proposed algorithm.
Originality/value
This is an early solution for spacecraft attitude control with dynamics model mutations.
Details
Keywords
Rong Wang, Jin Wu, Chong Li, Shengbo Qi, Xiangrui Meng, Xinning Wang and Chengxi Zhang
The purpose of this paper is to propose a high-precision attitude solution to solve the attitude drift problem caused by the dispersion of low-cost micro-electro-mechanical system…
Abstract
Purpose
The purpose of this paper is to propose a high-precision attitude solution to solve the attitude drift problem caused by the dispersion of low-cost micro-electro-mechanical system devices in strap-down inertial navigation attitude solution of micro-quadrotor.
Design/methodology/approach
In this study, a three-stage attitude estimation scheme that combines data preprocessing, gyro drifts prediction and enhanced unscented Kalman filtering (UKF) is proposed. By introducing a preprocessing model, the quaternion orientation is calculated as the composition of two algebraic quaternions, and the decoupling feature of the two quaternions makes the roll and pitch components independent of magnetic interference. A novel real-time based on differential value (DV) estimation algorithm is proposed for gyro drift. This novel solution prevents the impact of quartic characteristics and uses the iterative method to meet the requirement of real-time applications. A novel attitude determination algorithm, the pre-process DV-UKF algorithm, is proposed in combination with UKF based on the above solution and its characteristics.
Findings
Compared to UKF, both simulation and experimental results demonstrate that the pre-process DV-UKF algorithm has higher reliability in attitude determination. The dynamic errors in the three directions of the attitude are below 2.0°, the static errors are all less than 0.2° and the absolute attitude errors tailored by average are about 47.98% compared to the UKF.
Originality/value
This paper fulfils an identified need to achieve high-precision attitude estimation when using low-cost inertial devices in micro-quadrotor. The accuracy of the pre-process DV-UKF algorithm is superior to other products in the market.
Details
Keywords
Jiaolong Wang, Chengxi Zhang and Jin Wu
This paper aims to propose a general and rigorous study on the propagation property of invariant errors for the model conversion of state estimation problems with discrete group…
Abstract
Purpose
This paper aims to propose a general and rigorous study on the propagation property of invariant errors for the model conversion of state estimation problems with discrete group affine systems.
Design/methodology/approach
The evolution and operation properties of error propagation model of discrete group affine physical systems are investigated in detail. The general expressions of the propagation properties are proposed together with the rigorous proof and analysis which provide a deeper insight and are beneficial to the control and estimation of discrete group affine systems.
Findings
The investigation on the state independency and log-linearity of invariant errors for discrete group affine systems are presented in this work, and it is pivotal for the convergence and stability of estimation and control of physical systems in engineering practice. The general expressions of the propagation properties are proposed together with the rigorous proof and analysis.
Practical implications
An example application to the attitude dynamics of a rigid body together with the attitude estimation problem is used to illustrate the theoretical results.
Originality/value
The mathematical proof and analysis of the state independency and log-linearity property are the unique and original contributions of this work.
Details