Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 5 April 2023

Khaoula Assadi, Jihane Ben Slimane, Hanene Chalandi and Salah Salhi

This study aims to focus on an adaptive method for fault detection and classification of fault types that trigger in three-phase transmission lines using artificial neural…

129

Abstract

Purpose

This study aims to focus on an adaptive method for fault detection and classification of fault types that trigger in three-phase transmission lines using artificial neural networks (ANNs). The proposed scheme can detect and classify several types of faults, including line-to-ground, line-to-line, double-line-to-ground, triple-line and triple-line-to-ground faults.

Design/methodology/approach

The fundamental components of three-phase current and voltage were used as inputs in the ANNs. An analysis of the impact of variations in the fault resistance, fault type and fault inception time was conducted to evaluate the ANNs performance. The survey compares the performance of the multi-layer perceptron neural network (MLPNN) and Elman recurrent neural network trained with the backpropagation learning technique to improve each of the three phases of the fault detection and classification process. A detailed analysis validates the choice of the ANNs architecture based on the variation in the number of hidden neurons in each step.

Findings

The mean square error, root mean square error, mean absolute error and linear regression are measured to improve the efficiency of the ANN models for both fault detection and classification. The results indicate that the MLPNN can detect and classify faults with a satisfactory performance.

Originality/value

The smart adaptive scheme is fast and accurate for fault detection and classification in a single circuit transmission line when faced with different conditions and can be useful for transmission line protection schemes.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 1 of 1
Per page
102050