Jihane Abdelli and Brahim Brahimi
In this paper, the authors applied the empirical likelihood method, which was originally proposed by Owen, to the copula moment based estimation methods to take advantage of its…
Abstract
Purpose
In this paper, the authors applied the empirical likelihood method, which was originally proposed by Owen, to the copula moment based estimation methods to take advantage of its properties, effectiveness, flexibility and reliability of the nonparametric methods, which have limiting chi-square distributions and may be used to obtain tests or confidence intervals. The authors derive an asymptotically normal estimator of the empirical likelihood based on copula moment estimation methods (ELCM). Finally numerical performance with a simulation experiment of ELCM estimator is studied and compared to the CM estimator, with a good result.
Design/methodology/approach
In this paper we applied the empirical likelihood method which originally proposed by Owen, to the copula moment based estimation methods.
Findings
We derive an asymptotically normal estimator of the empirical likelihood based on copula moment estimation methods (ELCM). Finally numerical performance with a simulation experiment of ELCM estimator is studied and compared to the CM estimator, with a good result.
Originality/value
In this paper we applied the empirical likelihood method which originally proposed by Owen 1988, to the copula moment based estimation methods given by Brahimi and Necir 2012. We derive an new estimator of copula parameters and the asymptotic normality of the empirical likelihood based on copula moment estimation methods.