Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 21 May 2024

Gan Zhan, Zhihua Chen, Zhenyu Zhang, Jigang Zhan, Wentao Yu and Jiehao Li

This study aims to address the issue of random movement and non coordination between docking mechanisms and locking mechanisms, and proposes a comprehensive dynamic docking…

108

Abstract

Purpose

This study aims to address the issue of random movement and non coordination between docking mechanisms and locking mechanisms, and proposes a comprehensive dynamic docking control architecture that integrates perception, planning, and motion control.

Design/methodology/approach

Firstly, the proposed dynamic docking control architecture uses laser sensors and a charge-coupled device camera to perceive the pose of the target. The sensor data are mapped to a high-dimensional potential field space and fused to reduce interference caused by detection noise. Next, a new potential function based on multi-dimensional space is developed for docking path planning, which enables the docking mechanism based on Stewart platform to rapidly converge to the target axis of the locking mechanism, which improves the adaptability and terminal docking accuracy of the docking state. Finally, to achieve precise tracking and flexible docking in the final stage, the system combines a self-impedance controller and an impedance control algorithm based on the planned trajectory.

Findings

Extensive simulations and experiments have been conducted to validate the effectiveness of the dynamic docking system and its control architecture. The results indicate that even if the target moves randomly, the system can successfully achieve accurate, stable and flexible dynamic docking.

Originality/value

This research can provide technical guidance and reference for docking task of unmanned vehicles under the ground conditions. It can also provide ideas for space docking missions, such as space simulator docking.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 12 June 2023

Gan Zhan, Zhenyu Zhang, Zhihua Chen, Tianzhen Li, Dong Wang, Jigang Zhan and Zhengang Yan

This paper aims to focus on the spatial docking task of unmanned vehicles under ground conditions. The docking task of military unmanned vehicle application scenarios has strict…

176

Abstract

Purpose

This paper aims to focus on the spatial docking task of unmanned vehicles under ground conditions. The docking task of military unmanned vehicle application scenarios has strict requirements. Therefore, how to design a docking robot mechanism to achieve accurate docking between vehicles has become a challenge.

Design/methodology/approach

In this paper, first, the docking mechanism system is described, and the inverse kinematics model of the docking robot based on Stewart is established. Second, the genetic algorithm-based optimization method for multiobjective parameters of parallel mechanisms including workspace volume and mechanism flexibility is proposed to solve the problem of multiparameter optimization of parallel mechanism and realize the docking of unmanned vehicle space flexibility. The optimization results verify that the structural parameters meet the design requirements. Besides, the static and dynamic finite element analysis are carried out to verify the structural strength and dynamic performance of the docking robot according to the stiffness, strength, dead load and dynamic performance of the docking robot. Finally, taking the docking robot as the experimental platform, experiments are carried out under different working conditions, and the experimental results verify that the docking robot can achieve accurate docking tasks.

Findings

Experiments on the docking robot that the proposed design and optimization method has a good effect on structural strength and control accuracy. The experimental results verify that the docking robot mechanism can achieve accurate docking tasks, which is expected to provide technical guidance and reference for unmanned vehicles docking technology.

Originality/value

This research can provide technical guidance and reference for spatial docking task of unmanned vehicles under the ground conditions. It can also provide ideas for space docking missions, such as space simulator docking.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 2 of 2
Per page
102050