Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 19 September 2023

Jiazhong Zhang, Shuai Wang and Xiaojun Tan

The light detection and ranging sensor has been widely deployed in the area of simultaneous localization and mapping (SLAM) for its remarkable accuracy, but obvious drift…

87

Abstract

Purpose

The light detection and ranging sensor has been widely deployed in the area of simultaneous localization and mapping (SLAM) for its remarkable accuracy, but obvious drift phenomenon and large accumulated error are inevitable when using SLAM. The purpose of this study is to alleviate the accumulated error and drift phenomenon in the process of mapping.

Design/methodology/approach

A novel light detection and ranging SLAM system is introduced based on Normal Distributions Transform and dynamic Scan Context with switch. The pose-graph optimization is used as back-end optimization module. The loop closure detection is only operated in the scenario, while the path satisfies conditions of loop-closed.

Findings

The proposed algorithm exhibits competitiveness compared with current approaches in terms of the accumulated error and drift distance. Further, supplementary to the place recognition process that is usually performed for loop detection, the authors introduce a novel dynamic constraint that takes into account the change in the direction of the robot throughout the total path trajectory between corresponding frames, which contributes to avoiding potential misidentifications and improving the efficiency.

Originality/value

The proposed system is based on Normal Distributions Transform and dynamic Scan Context with switch. The pose-graph optimization is used as back-end optimization module. The loop closure detection is only operated in the scenario, while the path satisfies condition of loop-closed.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 1 of 1
Per page
102050