Xiaohui Xiong, Jiaxu Geng, Kaiwen Wang and Xinran Wang
This paper aims to investigate the effect of different wing height layouts on the aerodynamic performance and flow structure of high-speed train, in a train-wing coupling method…
Abstract
Purpose
This paper aims to investigate the effect of different wing height layouts on the aerodynamic performance and flow structure of high-speed train, in a train-wing coupling method with multiple tandem wings installed on the train roof.
Design/methodology/approach
The improved delayed detached eddy simulation method based on shear stress transport k-
Findings
The wing height layout has a significant effect on the lift, while its influence on the drag is weak. There are three distinctive vortex structures in the flow field: wingtip vortex, train body vortex and pillar vortex, which are influenced by the variation in wing height layout. The incremental wing layout reduces the mixing and merging between vortexes in the flow field, weakening the vorticity and turbulence intensity. This enhances the pressure difference between the upper and lower surfaces of both the train and wings, thereby increasing the overall lift. Simultaneously, it reduces the slipstream velocity at platform and trackside heights.
Originality/value
This paper contributes to understanding the aerodynamic characteristics and flow structure of a high-speed train coupled with wings. It provides a reference for the design aiming to achieve equivalent weight reduction through aerodynamic lift synergy in trains.