Bing Liang, Jiao Lv, Gang Wang and Tsubaki Noritatsu
The purpose of this paper is to prepare a novel halogen-free intumescent flame retardant (IFR) BHPPODC (benzene hydroquinone phosphorous oxy dichloride cyanuric chloride) for…
Abstract
Purpose
The purpose of this paper is to prepare a novel halogen-free intumescent flame retardant (IFR) BHPPODC (benzene hydroquinone phosphorous oxy dichloride cyanuric chloride) for application to epoxy resin (EP) and study their mechanical and flame-retardant performance.
Design/methodology/approach
The IFR was synthesised by phenylphosphonic dichloride, hydroquinone and cyanuric chloride via solvent reaction, and the structure was fully characterised by proton nuclear magnetic resonance (1H-NMR), mass spectrometry (MS) and Fourier transform infrared (FT-IR) spectroscopy. The thermal stability, mechanical and flame properties and morphology of the char layer of the flame-retardant EP was investigated by using thermogravimetric analysis (TGA), tensile and Charpy impact tests, limiting oxygen index (LOI) and vertical burning test (UL-94) and scanning electron microscopy (SEM).
Findings
Results of the LOI indicated that the halogen-free flame retardant as an additive exhibits very good flame-retardant effects. The results showed that the addition of IFR improved the flame resistance properties of epoxies resin composites, and the residual char ratio at 800°C significantly increased.
Research limitations/implications
The IFR can be prepared successfully and can improve the flame-retardant performance.
Practical implications
This contribution can provide a high flame retardant performance and has minimal impact on the mechanical performance of the BHPPODC/EP composition.
Originality/value
This study showed that flame-retardant BHPPODC has an effective flame effect under optimal conditions. When the 12 Wt.% IFR was added to the EP, the LOI was 29.1 and the UL-94 rank can reach V-0 rank, the tensile strength was 83.86 MPa and the impact strength was 8.82 kJ/m2.
Details
Keywords
Minghui Yang, Hong Lu, Xinbao Zhang, Yong Quan Zhang, Zhang Jie Li and Wei Zhang
This study aims to investigate mixed lubrication performances of stern bearing in a misaligned state considering turbulence and bearing deformation impacts.
Abstract
Purpose
This study aims to investigate mixed lubrication performances of stern bearing in a misaligned state considering turbulence and bearing deformation impacts.
Design/methodology/approach
A mixed lubrication model of stern bearing is established. The generalized average Reynolds equation governing the turbulent flow of lubricant is analyzed by considering the interaction of bearing elastic deformation, asperity contact pressure and film pressure. The bearing behaviors including minimum film thickness, hydrodynamic pressure, asperity friction force and frictional coefficient are studied under different models. The correctness of this model is verified by comparing it with that of the published data.
Findings
Numerical results indicate that elastic deformation noticeably decreases the maximum film pressure, the asperity contact force and the friction coefficient in the mixed lubrication stage. The effect of elastic deformation and turbulence reduces the transition speed from mixed to liquid lubrication.
Originality/value
This model includes both turbulence and bearing deformation impacts on journal bearing performances. It is expected that the numerical results can provide useful information to establish a stern bearing exposed to mixed lubrication conditions.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0352/
Details
Keywords
Kai Zhuang, Jieru Xiao and Xiaolong Yang
The purpose of this paper is to show that the droplet impact phenomenon is important for the advancement of industrial technologies in many fields such as spray cooling and ink…
Abstract
Purpose
The purpose of this paper is to show that the droplet impact phenomenon is important for the advancement of industrial technologies in many fields such as spray cooling and ink jet printing. Droplet bouncing on the nonwetting surfaces is a special phenomenon in the impact process which has attracted lots of attention.
Design/methodology/approach
In this work, the authors fabricated two kinds of representative nonwetting surfaces including superhydrophobic surfaces (SHS) and a slippery liquid-infused porous surface (SLIPS) with advanced UV laser processing.
Findings
The droplet bouncing behavior on the two kinds of nonwetting surfaces were compared in the experiments. The results indicate that the increasing Weber number enlarges the maximum droplet spreading diameter and raises the droplet bounce height but has no effect on contact time.
Originality/value
In addition, the authors find that the topological SHS and SLIPS with the laser-processed microwedge groove array produce asymmetric droplet bouncing with opposite offset direction. Microdroplets can be continuously transported without any additional driving force on such a topological SLIPS. The promising method for manipulating droplets has potential applications for the droplet-based microfluidic platforms.
Details
Keywords
Biao Li, Jun Sun, Hu Wang and Xiao Zhang
Under the action of many factors, the shaft of the shaft-journal bearing system inevitably moves along the axis direction at work, which will lead to the axial movement of journal…
Abstract
Purpose
Under the action of many factors, the shaft of the shaft-journal bearing system inevitably moves along the axis direction at work, which will lead to the axial movement of journal in the bearing. However, at present, only the dynamic and squeezing effects caused by the relative rotation and squeezing motion between the journal and the bearing surfaces are considered in the lubrication analysis of misaligned journal bearing and the axial movement of journal in the actual use of bearing is not considered. The purpose of this paper is to analyze the lubrication of journal bearing considering the axial movement of journal.
Design/methodology/approach
Taking the shaft-journal bearing system as the research object, a hydrodynamic lubrication model of journal bearing is established considering the axial movement and misalignment of journal. The finite difference method is used to solve the Reynolds equation for the lubrication analysis.
Findings
The axial movement of journal has a significant influence on the lubrication characteristics of misaligned journal bearing. The larger the misalignment angles of journal or the eccentricity of bearing, the greater the influence of the axial movement of journal on the lubrication performance of bearing. The lower the speed of bearing or the smaller the clearance of bearing, the more significant the influence of the axial movement of journal on the lubrication performance of bearing is.
Originality/value
The influence of the axial movement of journal on the lubrication performance of journal bearing is studied under different misalignment angles of journal, working conditions and clearances of bearing. The results of this paper are helpful to the design and research of the lubrication performance of journal bearing.
Details
Keywords
Tengyue Li, Changzheng Cheng, Feiyang Wang, Zongjun Hu and Jingchuan Li
There are domain integrals in the integral equations for analyzing the heat conduction with a heat source.
Abstract
Purpose
There are domain integrals in the integral equations for analyzing the heat conduction with a heat source.
Design/methodology/approach
In order to highlight the advantages of the boundary element method, the dual reciprocity method is introduced to transform the domain integral into the boundary integral through the special interpolation function. When the internal points near the boundary are selected as the nodes for constructing the approximating functions in the dual reciprocity method, the nearly singular integrals will occur in calculating the physical quantities of these internal points. The nearly singular integrals cannot be effectively evaluated by the Gaussian numerical integration, which will reduce the calculation accuracy of the temperature and heat flux at the internal points near the boundary. Herein, a set of analytical formulas is proposed to evaluate the nearly singular integrals in the boundary integral equations for the heat conduction problem with a heat source.
Findings
Thus, the accurate temperature and heat flux at the internal points closer to the boundary can be evaluated by comparing with the conventional boundary element method. The characteristic of the “boundary only” of the boundary element method is maintained for analyzing the temperature field in the heat conduction problem with a heat source.
Originality/value
The boundary-domain integral equation for the heat conduction problem with a heat source is transformed into the boundary integral equation by the dual reciprocity method. Then, the analytical algorithm is introduced to evaluate the nearly singular integral in the heat conduction boundary integral equations with a heat source. The present method retains the “boundary only” characteristic of the boundary element method and effectively evaluates the nearly singular integrals when the internal point is close to the boundary.
Details
Keywords
Qingyang Wang, Weifeng Wu, Ping Zhang, Chengqiang Guo and Yifan Yang
To guide the stable radius clearance choice of water-lubricated bearings for single screw compressors, this paper aims to analyze the effects of turbulence and cavitation on…
Abstract
Purpose
To guide the stable radius clearance choice of water-lubricated bearings for single screw compressors, this paper aims to analyze the effects of turbulence and cavitation on bearing performance under two conditions of specified external load and radius clearance.
Design/methodology/approach
A modified Reynolds equation considering turbulence and cavitation is adopted, based on the Jakobsson–Floberg–Olsson boundary condition, Ng–Pan model and turbulent factors. The equation is solved using the finite difference method and successive over-relaxation method to investigate the bearing performance.
Findings
The turbulent effect can increase the hydrodynamic pressure and cavitation. In addition, the turbulent effect can lead to an increase in the equilibrium radius clearance. The turbulent region exhibits a higher load capacity and cavitation rate. However, the increased cavitation negatively impacts the frictional coefficient and end flow rate. The impact of turbulence increases as the radius clearance decreases. As the rotating speed increases, the turbulence effect has a greater impact on the bearing characteristics.
Originality/value
The research can provide theoretical support for the design of water-lubricated journal bearings used in high-speed water-lubricated single screw compressors.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0029/
Details
Keywords
Bruna Caroline Campos, Felicio Bruzzi Barros and Samuel Silva Penna
The aim of this paper is to present a novel data transfer technique to simulate, by G/XFEM, a cohesive crack propagation coupled with a smeared damage model. The efficiency of…
Abstract
Purpose
The aim of this paper is to present a novel data transfer technique to simulate, by G/XFEM, a cohesive crack propagation coupled with a smeared damage model. The efficiency of this technique is evaluated in terms of processing time, number of Newton–Raphson iterations and accuracy of structural response.
Design/methodology/approach
The cohesive crack is represented by the G/XFEM enrichment strategy. The elements crossed by the crack are divided into triangular cells. The smeared crack model is used to describe the material behavior. In the nonlinear solution of the problem, state variables associated with the original numerical integration points need to be transferred to new points created with the triangular subdivision. A nonlocal strategy is tailored to transfer the scalar and tensor variables of the constitutive model. The performance of this technique is numerically evaluated.
Findings
When compared with standard Gauss quadrature integration scheme, the proposed strategy may deliver a slightly superior computational efficiency in terms of processing time. The weighting function parameter used in the nonlocal transfer strategy plays an important role. The equilibrium state in the interactive-incremental solution process is not severely penalized and is readily recovered. The advantages of such proposed technique tend to be even more pronounced in more complex and finer meshes.
Originality/value
This work presents a novel data transfer technique based on the ideas of the nonlocal formulation of the state variables and specially tailored to the simulation of cohesive crack propagation in materials governed by the smeared crack constitutive model.
Details
Keywords
Bruna Caroline Campos, Felício Bruzzi Barros and Samuel Silva Penna
The purpose of this paper is to evaluate some numerical integration strategies used in generalized (G)/extended finite element method (XFEM) to solve linear elastic fracture…
Abstract
Purpose
The purpose of this paper is to evaluate some numerical integration strategies used in generalized (G)/extended finite element method (XFEM) to solve linear elastic fracture mechanics problems. A range of parameters are here analyzed, evidencing how the numerical integration error and the computational efficiency are improved when particularities from these examples are properly considered.
Design/methodology/approach
Numerical integration strategies were implemented in an existing computational environment that provides a finite element method and G/XFEM tools. The main parameters of the analysis are considered and the performance using such strategies is compared with standard integration results.
Findings
Known numerical integration strategies suitable for fracture mechanics analysis are studied and implemented. Results from different crack configurations are presented and discussed, highlighting the necessity of alternative integration techniques for problems with singularities and/or discontinuities.
Originality/value
This study presents a variety of fracture mechanics examples solved by G/XFEM in which the use of standard numerical integration with Gauss quadratures results in loss of precision. It is discussed the behaviour of subdivision of elements and mapping of integration points strategies for a range of meshes and cracks geometries, also featuring distorted elements and how they affect strain energy and stress intensity factors evaluation for both strategies.
Details
Keywords
Qiang Li, Qinglei Liu, Yujun Wang, Shuo Zhang, Yujing Du, Bin Li and Wei-Wei Xu
The stringent requirements for environmental protection have induced the extensive applications of water-lubricated journal bearings in marine propulsion. The nonlinear dynamic…
Abstract
Purpose
The stringent requirements for environmental protection have induced the extensive applications of water-lubricated journal bearings in marine propulsion. The nonlinear dynamic analysis of multiple grooved water-lubricated bearings (MGWJBs) has not been fully covered so far in the literature. This study aims to conduct the nonlinear dynamic analysis of the instability for MGWJBs.
Design/methodology/approach
An attenuation rate interpolation method is proposed for the determination of the critical instability speed. Based on a structured mesh movement algorithm, the transient hydrodynamic force model of MGWJBs is set up. Furthermore, the parameters’ analysis of nonlinear instability for MGWJBs is conducted. The minimum water film thickness, side leakage, friction torque and power loss of friction are fully analyzed.
Findings
With the increase of speed, the journal orbits come across the steady state equilibrium motion, sub-harmonic motion and limit circle motion successively. At the limit circle motion stage, the orbits are much larger than that of steady state equilibrium and sub-harmonic motion. The critical instability speed increases when the spiral angle decreases or the groove angle increases. The minimum water film thickness peak is at the rotor speed of 4,000 r/min for the MGWJB with Sa = 0°. As rotor speed increases, the side leakage decreases slightly while the friction torque and the power loss of friction increase gradually.
Originality/value
Present research provides a beneficial reference for the dynamic mechanism analysis and design of MGWJBs.
Details
Keywords
Shitendu Some and Sisir Kumar Guha
In the application of hydrostatic double-layered porous journal bearings, misalignment of bearing systems is a major problem. On the other hand, the use of coupled-stress fluid as…
Abstract
Purpose
In the application of hydrostatic double-layered porous journal bearings, misalignment of bearing systems is a major problem. On the other hand, the use of coupled-stress fluid as a lubricant is more practical in the present days. Furthermore, in case of porous bearing, neglecting slip effect and percolation effect of additives into the pores may lead to erroneous result. Hence, this paper aims to address the effect of journal misalignment and coupled-stress lubricant on the steady-state film pressure of the double-layered porous journal bearing with tangential velocity slip and percolation effect.
Design/methodology/approach
First, considering the tangential velocity slip, the most general modified Reynolds type equation has been derived for the film region and the governing equations for flow in the coarse and fine layers of porous medium, incorporating the percolation effect for a double-layered porous bearing. Here, considering the misalignment caused by shaft displacement. Film thickness expression established considering the effect of misalignment. Steady-state film pressures are obtained by solving modified Reynolds equation based on the coupled-stress lubrication theory. Effects of journal misalignment and coupled-stress lubricant on the pressure profiles in the film region are discussed and demonstrated in the graphical form.
Findings
In this paper, effects of journal misalignment and coupled-stress lubricant on the pressure profiles in the film region are obtained. In general, higher degree of misalignment gives higher steady-state pressure value in the film region, and this pressure increases due to increase in coupled-stress parameter up to a certain limit.
Originality/value
To the best of the author’s knowledge, there is no literature available, so far, that addresses the analysis of the steady-state pressure in the film region of a doubled–layered porous journal bearing under misaligned condition with coupled-stress lubricant. But in this paper all these points are included, which makes this article valuable in design purpose.