Jianran Lv, Hongyao Shen and Jianzhong Fu
3D printing for objects whose size exceeds the scope of the printer is still a tough challenge in application. The purpose of this paper is to propose a visual stitching…
Abstract
Purpose
3D printing for objects whose size exceeds the scope of the printer is still a tough challenge in application. The purpose of this paper is to propose a visual stitching large-scale (VSLS) 3D-printing method to solve this problem.
Design/methodology/approach
The single segmentation point method and multiple segmentation point method are proposed to adaptively divide each slice of the model into several segments. For each layer, the mobile robot will move to different positions to print each segment, and every time it arrives at the planned location, the contours of the printed segments are captured with a high-definition camera by the feature point recognition algorithm. Then, the coordinate transformation is implemented to adjust the printing codes of the next segment so that each part can be perfectly aligned. The authors print up layer by layer in this manner until the model is complete.
Findings
In Section 3, two specimens, whose sizes are 166 per cent and 252 per cent of the scope of the 3D-printing robot, are successfully printed. Meanwhile, the completed models of the specimens are printed using a suitable traditional printer for comparison. The result shows that the specimens in the test group have basically identical sizes to those in the control group, which verifies the feasibility of the VSLS method.
Originality/value
Unlike most of the current solutions that demand harsh requirement for positioning accuracy of the mobile robots, the authors use a camera to compensate for the lost positioning accuracy of the device during movement, thereby avoiding precise control to the device’s location. And the coordinate transformation is implemented to adjust the printing codes of the next sub-models so that each part can be aligned perfectly.
Details
Keywords
Jianran Lv, Hongyao Shen and Jianzhong Fu
The purpose of this paper is to supplement and upgrade existing research on LPBF of NiTi alloys. Laser powder bed fusion (LPBF) is a promising method for fabricating…
Abstract
Purpose
The purpose of this paper is to supplement and upgrade existing research on LPBF of NiTi alloys. Laser powder bed fusion (LPBF) is a promising method for fabricating nickel–titanium (Ni–Ti) alloys. It is well known that the energy density is mainly adjusted through the scanning speed and laser power. Nevertheless, there is lack in research on the effects of separately adjusting the scanning speed and laser power on the properties of the final Ni–Ti components. On the other hand, although Ni-rich Ni–Ti alloys [such as Ni54(at.%)Ti] have great potential in structural applications because of their high hardness and good shape stability, at present, there are few studies focusing on this grade of Ni–Ti alloy.
Design/methodology/approach
In this work, the energy density was adjusted by changing the laser power and scanning speed separately, and the corresponding process parameters were used to fabricate Ni54(at.%)Ti alloys. The formability (including the relative density, impurity content, etc.) and tensile properties of the LPBF Ni54(at.%)Ti alloys fabricated with different combinations of process parameters were analyzed.
Findings
The effects of increasing the laser power and reducing the scanning speed on the properties of the LPBF Ni54(at.%)Ti alloys and the property differences between components manufactured with different combinations of laser power and scanning speed under the same energy density were analyzed. The optimal process parameters were selected to fabricate the components that achieved the highest ultimate tensile strength of 537 MPa, a high relative density of 98.23%, a relatively low impurity content (0.073 Wt.% of carbon and 0.06 Wt.% of oxygen) and an ideal pseudoelasticity (95% recovery rate loaded at 300 MPa).
Originality/value
The effects of increasing the laser power and reducing the scanning speed on the properties of LPBF Ni54(at.%)Ti alloys were studied in this paper. This work is an upgrade and supplement to the existing research on fabricating Ni-rich Ni–Ti alloys by the LPBF method.