Zhenqi Liu, Jie Wang, Jianhan Chen, Xiya Liu, Yibin Yin and Chaolei Ban
The purpose of this study is to explore the mechanism of branch pits and tunnels formation and increase the specific surface area and capacitance of anode Al foil for high voltage…
Abstract
Purpose
The purpose of this study is to explore the mechanism of branch pits and tunnels formation and increase the specific surface area and capacitance of anode Al foil for high voltage electrolytic capacitor by D.C. etching in acidic solution and neutral.
Design/methodology/approach
Al foil was first D.C. etched in HCl-H2SO4 mixed acidic solution to form main tunnels perpendicular to the Al surface, and then D.C. etched in neutral NaCl solution including 0.5 per cent C6H8O7 and Cu(NO3)2 with different concentration to form branch tunnels normal to Al surface. Between two etching, Cu nuclei were electroless deposited on the interior surface of main tunnels by natural occluded corrosion cell effect to form micro Cu-Al galvanic local cells. The effects of electroless deposited Cu nuclei on cross-section etching morphologies and electrochemical behavior of Al foil was investigated with SEM, polarization curve and electrochemical impedance spectroscopy (EIS).
Findings
The results show that sub branch tunnels can form along the main tunnels owing to the formation of Cu-Al micro-batteries, in which Cu is cathode and Al is anode. With increase in Cu(NO3)2 concentration, more Cu nuclei can be electroless deposited and serve as the favorable sites for branch tunnel initiation along the whole length of main tunnels, leading to enhancement in specific capacitance of anode Al foil.
Originality/value
Cu nuclei were electroless deposited on the interior surface of main tunnels by natural occluded corrosion cell effect to form micro Cu-Al galvanic local cells, which can serve as the favorable sites for branch tunnel initiation along the main tunnels to enhance specific capacitance of anode Al foil.
Details
Keywords
Ze-Xiang Wu, Hui Ji, Jian Han and Chuang Yu
Current modellings of granular collapse are lack of considering the effect of soil density. This paper aims to present a numerical method to analyse the collapse of granular…
Abstract
Purpose
Current modellings of granular collapse are lack of considering the effect of soil density. This paper aims to present a numerical method to analyse the collapse of granular column based on the critical-state soil mechanics.
Design/methodology/approach
In the proposed method, a simple critical-state based constitutive model is first adopted and implemented into a finite element code using the coupled Eulerian–Lagrangian technique for large deformation analysis. Simulations of column collapse with various aspect ratios are then conducted for a given initial soil density. The effect of aspect ratio on the final size of deposit morphology, dynamical collapse profiles and the stable region is discussed comparing to experimental results. Moreover, complementary simulations with various initial soil densities on each aspect ratio are conducted.
Findings
Simulations show that a lower value of initial density leads to a lower final deposit height and a longer run-out distance. The simulated evolutions of kinetic energy and collapsing profile with time by the proposed numerical approach also show clearly a soil density-dependent collapse process.
Practical implications
To the end, this study can improve the understanding of column collapse in different aspect ratios and soil densities, and provide a computational tool for the analysis of real scale granular flow.
Originality/value
The originality of this paper is proposed in a numerical approach to model granular column collapse considering the influences of aspect ratio and initial void ratio. The proposed approach is based on the finite element platform with coupled Eulerian–Lagrangian technique for large deformation analysis and implementing the critical-state based model accounting for the effect of soil density.