Search results

1 – 4 of 4
Article
Publication date: 16 September 2024

Shanshuai Niu, Junzheng Wang and Jiangbo Zhao

There are various uncertain and nonlinear problems in hydraulic legged robot systems, including parameter uncertainty, unmodeled dynamics and external disturbances. This study…

Abstract

Purpose

There are various uncertain and nonlinear problems in hydraulic legged robot systems, including parameter uncertainty, unmodeled dynamics and external disturbances. This study aims to eliminate uncertainties and improve the foot trajectory tracking control performance of hydraulic legged robots, a high-performance foot trajectory tracking control method based on fixed-time disturbance observers for hydraulic legged robots is proposed.

Design/methodology/approach

First, the robot leg mechanical system model and hydraulic system model of the hydraulic legged robot are established. Subsequently, two fixed-time disturbance observers are designed to address the unmatched lumped uncertainty and match lumped uncertainty in the system. Finally, the lumped uncertainties are compensated in the controller design, and the designed motion controller also achieves fixed-time stability.

Findings

Through simulation and experiments, it can be found that the proposed tracking control method based on fixed-time observers has better tracking control performance. The effectiveness and superiority of the proposed method have been verified.

Originality/value

Both the disturbance observers and the controller achieve fixed-time stability, effectively improving the performance of foot trajectory tracking control for hydraulic legged robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 June 2021

Jiehao Li, Shoukun Wang, Junzheng Wang, Jing Li, Jiangbo Zhao and Liling Ma

When it comes to the high accuracy autonomous motion of the mobile robot, it is challenging to effectively control the robot to follow the desired trajectory and transport the…

Abstract

Purpose

When it comes to the high accuracy autonomous motion of the mobile robot, it is challenging to effectively control the robot to follow the desired trajectory and transport the payload simultaneously, especially for the cloud robot system. In this paper, a flexible trajectory tracking control scheme is developed via iterative learning control to manage a distributed cloud robot (BIT-6NAZA) under the payload delivery scenarios.

Design/methodology/approach

Considering the relationship of six-wheeled independent steering in the BIT-6NAZA robot, an iterative learning controller is implemented for reliable trajectory tracking with the payload transportation. Meanwhile, the stability analysis of the system ensures the effective convergence of the algorithm.

Findings

Finally, to evaluate the developed method, some demonstrations, including the different motion models and tracking control, are presented both in simulation and experiment. It can achieve flexible tracking performance of the designed composite algorithm.

Originality/value

This paper provides a feasible method for the trajectory tracking control in the cloud robot system and simultaneously promotes the robot application in practical engineering.

Details

Assembly Automation, vol. 41 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 2 December 2021

Sheng Xu, Mengge Zhang, Bo Xia and Jiangbo Liu

This study aimed to identify driving factors of safety attitudinal ambivalence (AA) and explore their influence. Construction workers' intention to act safely can be instable…

Abstract

Purpose

This study aimed to identify driving factors of safety attitudinal ambivalence (AA) and explore their influence. Construction workers' intention to act safely can be instable under conflicting information from safety management, co-workers and habitual unsafe behaviour. Existing research explained the mechanism of unsafe behaviours as individual decisions but failed to include AA, as the co-existence of both positive and negative attitude.

Design/methodology/approach

This study applied system dynamics to explore factors of construction workers' AA and simulate the process of mitigating the ambivalence for less safety behaviour. Specifically, the group model building approach with eight experts was used to map the causal loop diagram and field questionnaire of 209 construction workers were used to collect empirical data for initiating parameters.

Findings

The group model building identified five direct factors of AA, namely the organisational safety support, important others' safety attitude, emotional arousal, safety production experience and work pressure, with seven feedback paths. The questionnaire survey obtained the initial values of the factors in the SD model, with the average ambivalence at 0.389. The ambivalence between cognitive and affective safety attitude was the highest. Model simulation results indicated that safety experience and work pressure had the most significant effects, and safety experience and positive attitude of co-workers could compensate the pressure from tight schedule and budget.

Originality/value

This study provided a new perspective of the dynamic safety attitude under the co-existence of positive and negative attitude, identified its driving factors and their influencing paths. The group model building approach and field questionnaire surveys were used to provide convincible suggestions for empirical safety management with least and most effective approaches and possible interventions to prevent unsafe behaviour with tight schedule and budget.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 September 2013

Bin He, Dichen Li, Anfeng Zhang, Zhongliang Lu, Jiangbo Ge and Doan Tat Khoa

The purpose of this paper is to investigate the influence of the oxidation on the cracks of DZ125L nickel-based superalloy thin-walled parts in laser metal direct forming (LMDF)…

Abstract

Purpose

The purpose of this paper is to investigate the influence of the oxidation on the cracks of DZ125L nickel-based superalloy thin-walled parts in laser metal direct forming (LMDF).

Design/methodology/approach

Thin-walled cylinders were fabricated in protective atmosphere with different oxygen contents in order to reveal the influence of oxidation on the morphology of cracks. The influence of oxidation on the cracks was investigated in detail by measuring the wall thicknesses of cylinders, the residual stress in the top surface of the cylinders and the composition of the cracks. Finally, the validity of the results was verified by fabricating a thin-walled turbine blade in protective atmosphere.

Findings

The experimental results showed that wall thickness fluctuation of cylinders, unequal residual stress distribution of cylinders and the oxides in the crack were all the critical factors which led to crack of DZ125L thin-walled parts. Thin-walled turbine blades with no cracks can be fabricated when the oxygen content was about less than 150 ppm in protective atmosphere.

Research limitations/implications

The appropriate oxygen content in protective atmosphere is helpful for fabricating thin-walled parts of nickel-based superalloy like DZ125L, and the results can show what will happen at different oxygen levels. Moreover, the results show that the cracks can be eliminated as the oxygen content reduce to less than 150 ppm rather less than 10 ppm or even less, which can reduce the cost of protective gas as forming thin-walled parts of nickel-based superalloy such as DZ125L.

Practical implications

The appropriate oxygen content in protective atmosphere is helpful for fabricating thin-walled parts of nickel-based superalloy like DZ125L. However, when heavy solid parts of some other material other than DZ125L were fabricated, the oxygen content of less than 150 ppm may be not suitable.

Originality/value

The influence of oxidation on the cracks of DZ125L thin-walled parts in LMDF was investigated in detail, and a DZ125L thin-walled turbine blade with no cracks was fabricated by adjusting the oxygen content in protective atmosphere.

Details

Rapid Prototyping Journal, vol. 19 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 4 of 4