Hongyan Shi, Jiali Ning and Qiuxin Yan
The purpose of this paper is to calibrate the surface emissivity of micro drill bit and to investigate the effect of different drilling parameters on the temperature of micro…
Abstract
Purpose
The purpose of this paper is to calibrate the surface emissivity of micro drill bit and to investigate the effect of different drilling parameters on the temperature of micro drill bit in printed circuit board (PCB) micro drilling process.
Design/methodology/approach
The surface emissivity of micro drill bit was obtained by experiments. Analysis of variance (ANOVA) was applied in this study to analysis the effect of different drilling parameters on the temperature of micro drill bit in PCB micro hole drilling. The most significant influencing factor on micro drill bit temperature was achieved by ANOVA.
Findings
First, the surface emissivity of cemented carbide rod decreased from 0.4 to 0.32 slowly with temperature in the range of 50-220°C. Second, the most significant influencing factor on the micro drill bit temperature was spindle speed among the drilling parameters including spindle speed, retract rate and infeed rate.
Research limitations/implications
In this paper, the influence of roughness of black coating, carbide rod and micro drill bit on the surface emissivity calibration and the temperature measurement was not considered.
Originality/value
A new simple method has been presented to calibrate the surface emissivity of micro drill bit. Through calibrating the surface emissivity of micro drill bit, the temperature of micro drill bit can be measured accurately by infrared thermometry. Analyzing the influences of different drilling parameters on the temperature of micro drill bit, the mechanism of drilling parameters on drilling temperature is achieved. The basis for the selection of drilling parameters to improve the hole quality is enhanced.
Details
Keywords
Hongyan Shi, Jiali Ning and Hui Li
The purpose of this paper is to present a new method to optimize the micro drill bit based on finite element analysis, and analyze the performance of the asymmetric helix groove…
Abstract
Purpose
The purpose of this paper is to present a new method to optimize the micro drill bit based on finite element analysis, and analyze the performance of the asymmetric helix groove micro drill bit and provide a way to conduct the optimization of micro drill bits.
Design/methodology/approach
First, the stress and deform of the micro drills were analyzed in ANSYS. Second, the influence of helix angle, web thickness and ratio of flute to land on stiffness was explored. Combining the former two results, a better set of parameters were optimized. Third, the modal analysis and harmonic response analysis of the optimized micro drill bit were analyzed in ANSYS. Finally, an experiment was carried out to verify the performance of the asymmetric helix groove micro drill bit.
Findings
The stress and deform of the asymmetric helix groove micro drill bit are not symmetric. The rigidity is getting better with the web thickness increasing in the selected range; while, the rigidity is getting worse with the helix angle and ratio of flute to land increasing in the selected range. The natural frequencies of the optimized micro drill bit are far away from the excitation frequency, and the response displacement is very small under the excitation of the spindle. In the drilling experiment, the optimized micro drill bit performs well.
Research limitations/implications
In this paper, the diameter of the asymmetric helix groove micro drill bit was 0.3 mm and the cross-section shape was not considered. The future research work should consider different diameters and cross-section shapes.
Originality/value
Analyzing the influence of three main geometry parameters on the rigidity in ANSYS, a better set of parameters were optimized from the analysis results. The drilling experimental results show that this method is of great significance for obtaining the appropriate parameters of asymmetric helix groove micro drill bits.
Details
Keywords
China represents around 20% of the world's population, and her economy is still performing well under economic crisis. Historical events have shaped different parts of China with…
Abstract
China represents around 20% of the world's population, and her economy is still performing well under economic crisis. Historical events have shaped different parts of China with different economic developments and cultural encounters. The most prominent difference is between Hong Kong and the Mainland. This chapter would like to examine the development and issues of fashion retailing in China. For better understanding, this chapter starts with a brief discussion on apparel industry development and fashion culture in Hong Kong and the Mainland, follows by historical development and then presents systems of fashion retailing in both Hong Kong and the Mainland. Desktop research and exploratory research techniques were employed. Stores of international fashion luxury brands in Hong Kong, Shanghai and Beijing were visited. Comparison of branding issues, particularly for luxury market in Hong Kong and the Mainland are discussed, so are future directions of fashion retailing in these places.
Details
Keywords
Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat
This paper aims to report the effect of titanium oxide (TiO2) particles on the physical, mechanical, tribological and water resistance properties of 5% NaOH-treated bamboo…
Abstract
Purpose
This paper aims to report the effect of titanium oxide (TiO2) particles on the physical, mechanical, tribological and water resistance properties of 5% NaOH-treated bamboo fiber–reinforced composites.
Design/methodology/approach
In this research, the epoxy/bamboo/TiO2 hybrid composite filled with 0–8 Wt.% TiO2 particles has been fabricated using simple hand layup techniques, and testing of the developed composite was done in accordance with the American Society for Testing and Materials (ASTM) standard.
Findings
The results of this study indicate that the addition of TiO2 particles improved the mechanical properties of the developed epoxy/bamboo composites. Tensile properties were found to be maximum for 6 Wt.%, and impact strength was found to be maximum for 8 Wt.% TiO2 particles-filled composite. The highest flexural properties were found at a lower TiO2 fraction of 2 Wt.%. Adding TiO2 filler helped to reduce the water absorption rate. The studies related to the wear and friction behavior of the composite under dry and abrasive wear conditions reveal that TiO2 filler was beneficial in improving the wear performance of the composite.
Originality/value
This research paper attempts to include both TiO2 filler and bamboo fibers to develop a novel composite material. TiO2 micro and nanoparticles are promising filler materials; it helps to enhance the mechanical and tribological properties of the epoxy composites and in literature, there is not much work reported, where TiO2 is used as a filler material with bamboo fiber–reinforced epoxy composites.