Xiang Gao, Jiahao Gu and Yingchao Zhang
This paper aims to investigate whether single-name options trading prior to earnings announcements is more informative when there exist real activity manipulations.
Abstract
Purpose
This paper aims to investigate whether single-name options trading prior to earnings announcements is more informative when there exist real activity manipulations.
Design/methodology/approach
Using 5,419 earnings announcements during 2004–2018 made by 208 public US companies with relatively high options volumes ranked by the CBOE, the authors uncover two regularities using predictive regressions for stock return.
Findings
First, the total options volume up to twenty days pre-announcement is significantly higher than that in other periods only for earnings management firms; moreover, after detailing options characteristics, the authors find these intensive pre-announcement trading to be concentrated in transactions of in-the-money call and long-term maturity put options. Second, an increase in the single-name call minus put options volume can positively predict the underlying stock’s next-day excess return much better in real earnings management firms, with a larger magnitude of effect in periods right before regular earnings announcement dates.
Originality/value
This paper makes a marginal and novel contribution by showing that real earnings management can serve as a proxy for the potential profit from informed trading in options as the return predictability of options volume becomes stronger for firms that have the manipulation motive and indeed perform manipulative actions.
Details
Keywords
Jiahao Liu, Tao Gu and Zhixue Liao
The purpose of this paper is to consider three factors, namely, intra-week demand fluctuations, interrelationship between the number of robots and order scheduling and conflicting…
Abstract
Purpose
The purpose of this paper is to consider three factors, namely, intra-week demand fluctuations, interrelationship between the number of robots and order scheduling and conflicting objectives (i.e. cost minimization and customer satisfaction maximization), to optimize the robot logistics system.
Design/methodology/approach
The number of robots and the sequence of delivery orders are first optimized using the heuristic algorithm NSGACoDEM, which is designed using genetic algorithm and composite difference evolution. The superiority of this method is then confirmed by a case study of a four-star grade hotel in South Korea and several comparative experiments.
Findings
Two performance metrics reveal the superior performance of the proposed approach compared to other baseline approaches. Results of comparative experiments found that the consideration of three influencing factors in the operation design of a robot logistic system can effectively balance cost and customer satisfaction over the course of a week in hotel operation and optimize robot scheduling flexibility.
Practical implications
The results of this study reveal that numerous factors (e.g. intra-week demand fluctuations) can optimize the performance efficiency of robots. The proposed algorithm can be used by hotels to overcome the influence of intra-week demand fluctuations on robot scheduling flexibility effectively and thereby enhance work efficiency.
Originality/value
The design of a novel algorithm in this study entails enhancing the current robot logistics system. This algorithm can successfully manage cost and customer satisfaction during off-seasons and peak seasons in the hotel industry while offering diversified schemes to various types of hotels.
Details
Keywords
Zhou Yang, Minghe Chi, Xiaorui Zhang, Jiahao Shi, Xue Sun, Xiaoman Zhang and Qingguo Chen
Epoxy resin (EP) is a thermosetting resin commonly characterized by its inherent brittleness, which limits its widespread application. To overcome this limitation, a novel…
Abstract
Purpose
Epoxy resin (EP) is a thermosetting resin commonly characterized by its inherent brittleness, which limits its widespread application. To overcome this limitation, a novel flexible chain-blocking hyperbranched polyester (HBP) was conceptualized and synthesized to enhance the toughness and dielectric properties of EP.
Design/methodology/approach
Using P-toluene sulfonic acid (p-TSA) as the catalyst and Bis(hydroxymethyl)propionic acid (DMPA) as the branching unit with pentaerythritol (PER) as the core, an experimental synthesis was conducted. Subsequently, n-hexanoic acid was introduced separately to produce hyperbranched polyester with n-hexanoic acid capped structures. Microstructural, mechanical, insulating and dielectric analyses of the composite were performed to determine the optimal proportion of HBP.
Findings
Recent research has demonstrated that the flexible segments within hyperbranched polyester create an interpenetrating network structure with the molecular chains of epoxy resin, thereby effectively augmenting the toughness of the epoxy resin. Additionally, HBP has reduced the ε and tgδ values of the epoxy-anhydride cured product by decreasing the number of polar groups per unit volume of EP through the introduction of free volumes.
Originality/value
Currently, HBP serves as an innovative toughening strategy and modifier for epoxy resin. The toughening mechanism involves the generation of free volume by HBP, providing space for EP molecules to maneuver under load. Additionally, the free volume contributes to a reduction in the dielectric constant of EP by diminishing the polarizable group content. Simultaneously, the incorporation of HBP features flexible chains grafted onto the epoxy resin.
Details
Keywords
Jiahao Shi, Ling Weng, Xiaoming Wang, Xue Sun, Shuqiang Du, Feng Gao and Xiaorui Zhang
Epoxy resin (EP) is a kind of thermosetting resin, and its application is usually limited by poor toughness. In this case, a type of new flexible chain blocking hyperbranched…
Abstract
Purpose
Epoxy resin (EP) is a kind of thermosetting resin, and its application is usually limited by poor toughness. In this case, a type of new flexible chain blocking hyperbranched polyester (HBP) was designed and synthesized. The purpose of this study is to enhance the toughness and dielectric properties of EP.
Design/methodology/approach
P-toluene sulfonic acid was used as the catalyst, with dimethy propionic acid as the branch unit and pentaerythritol as the core in the experiment. Then, n-hexanoic acid and n-caprylic acid were, respectively, put to gain HBP with a n-hexanoic acid and n-caprylic acid capped structure. The microstructure, mechanical properties, insulation properties and dielectric properties of the composite were characterized for the purpose of finding the appropriate proportion of HBP.
Findings
HBP enhanced the toughness of epoxy-cured products by interpenetrating polymer network structure between the flexible chain of HBP and the EP molecular chain. Meanwhile, HBP reduced the ε and tgδ of the epoxy anhydride-cured product by reducing the number of polar groups per unit volume of the EP through free volumes.
Research limitations/implications
Yet EP is a kind of thermosetting resin, which is widely used in coating, aerospace, electronics, polymer composites and military fields, but it is usually limited by poor toughness. In a word, it is an urgent priority to develop new EP with better toughness and mechanical properties.
Originality/value
At present, HBP has been applied as a new kind of toughening strategy and as a modifier for EP. According to the toughening mechanism of HBP modified EP, the free volume of HBP creates a space for the EP molecule to move around when loaded. Moreover, the free volume could cause the dielectric constant of EP to diminish by reducing the content of polarizable groups. Meanwhile, the addition of HBP with flexible chains grafted to the EP could develop an interpenetrating network structure, thus further enhancing the toughness of EP
Details
Keywords
Feng Gao, Xiaorui Zhang, Ling Weng, Yujun Cheng and Jiahao Shi
Phenolic epoxy vinyl ester resin (PEVER) is an advanced resin matrix, which has excellent heat resistance, electrical insulation. However, the brittleness and poor toughness of…
Abstract
Purpose
Phenolic epoxy vinyl ester resin (PEVER) is an advanced resin matrix, which has excellent heat resistance, electrical insulation. However, the brittleness and poor toughness of its curing product limited its application, so this paper aims to modify the PEVER with hyperbranched polyimide (HBPI), so as to enhance the toughness, heat resistance and dielectric properties of PEVER.
Design/methodology/approach
Hexamethylene diisocyanate trimer was used as the central reactant. Methyl tetrahydrophthalic anhydride was used as the branching unit, stannous octoate was used as the catalyst and hydroquinone was prepared as the inhibitor. Then, the hyperbranched structure of HBPI was characterized by Fourier transform infrared spectrometer and 13C-NMR. Next, PEVER was mixed with different contents of HBPI, and then the authors tested its curing product.
Findings
It is found that with the addition of HBPI, the free volume of the system was increased and the content of polar groups was decreased in each unit space, so the dielectric constant (ε) and the dielectric loss (tanδ) were decreased. In addition, PEVER could be well toughened by HBPI and the thermal stability of PEVER was improved.
Originality/value
HBPI has excellent heat resistance. The addition of hyperbranched polymer increases the free volume of the system so it can slow down the transfer of stress and its nearly circular structure can absorb the impact energy from all directions. Moreover, an appropriate amount of free volume can decrease the dielectric constant of PEVER by reducing the content of polar groups.
Details
Keywords
Shangkun Liang, Rong Fu and Yanfeng Jiang
Independent directors are important corporate decision participants and makers. Based on the Chinese cultural background, this paper interprets the listing order of independent…
Abstract
Purpose
Independent directors are important corporate decision participants and makers. Based on the Chinese cultural background, this paper interprets the listing order of independent directors as independent directors’ status, exploring their influence on the corporate research and development (R&D) behavior.
Design/methodology/approach
This paper studies A-share listed firms in China from 2008 to 2018 as the sample. The main method is ordinary least square (OLS) regression. We also use other methods to deal with endogenous problems, such as the firm fixed effect method, change model method, two-stage instrumental variable method, and Heckman two-stage method.
Findings
(1) Higher independent directors’ status attribute to more effective exertion of supervision and consultation function, and positively enhance the corporate R&D investment. The increase of the independent director’ status by one standard deviation will increase the R&D investment by 4.6%. (2) The above effect is more influential in firms with stronger traditional culture atmosphere, higher information opacity and higher performance volatility. (3) High-status independent directors promote R&D investment by improving the scientificity of R&D evaluation and reducing information asymmetry. (4) The enhancing effect of independent director’ status on R&D investment is positively associated with the firm’s patent output and market value.
Originality/value
This paper contributes to understanding the relationship between the independent directors’ status and their duty execution from an embedded cultural background perspective. The findings of the study enlighten the improvement of corporate governance efficiency and the healthy development of the capital market.