Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 25 November 2019

Jia Xu, Jing Yu Zhang, Jiahan Xu, Yuqi Chang, Feilong Shi, Zhanzhu Zhang and Huanxia Zhang

One of the intensively developed in recent years new materials are hybrid textiles modified with carbon nanotubes (CNT). In this paper, CNTs was modified by grafting dimethyl…

276

Abstract

Purpose

One of the intensively developed in recent years new materials are hybrid textiles modified with carbon nanotubes (CNT). In this paper, CNTs was modified by grafting dimethyl phosphite and perfluorohexyl iodine. It was applied to the cotton to obtain the flame-retardant, water-repellent, ultraviolet-resistant and conductive multifunctional fabric.

Design/methodology/approach

The modified CNTs were loaded onto cotton fabric by impregnation and drying. The CNTs-multi was synthesized by grafted dimethyl phosphite and perfluorohexyl chain and applied to the cotton by dipping-drying method. The surface chemistry of functionalized CNTs was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). The combustion properties were evaluated using a microscale combustion calorimeter, match test and TGA analysis. Surface hydrophilicity and hydrophobicity of fabric surface was characterized by static contact angle, and the UV resistance of the fabric was represented by the UPF value.

Findings

Dimethyl phosphite and perfluorohexyl chain were grafted on the surface of CNTs successively. The quantity of each component on the surface of CNTs was calculated according to XPS results. According to miniature combustion calorimeter data, both the value of maximum heat release rate (PHRR) and total heat release (THR) of CNTs -multi/cotton was about 65% lower than that of untreated cotton fabric. The residue after combustion of CNTs -multi/ cotton in the match test was more compact. The electrical conductivity of multi/ cotton is 225.6 kΩ/□, which is better than that of untreated cotton fabric. The UPF value of CNTs-multi/cotton reached 121, which was indicated that the anti-ultraviolet performance of CNTs-multi was greatly improved.

Research limitations/implications

Modifying method to increase the functional component amuount on the CNTs surface still need to be explored, which could increase the hydrophobicity. How to further improve the functional effect and the general synthetic steps will be of great significance to the preparation of multifunctional modified cotton fabric.

Practical implications

This modifying method can be used in any of multifunctional textile preparation process. The UV-resistant and flame retardant cotton fabric was revealed as a sample for use in outdoor sports such as clothes and tents.

Originality/value

To meet the needs of multifunctional cotton fabric, the modification of CNTs with dimethyl phosphite and perfluorohexyl iodine has not been reported. The modified fabric has flame-retardant, UV-resistant conductive and conductive properties.

Details

Pigment & Resin Technology, vol. 49 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 30 August 2019

Jia Xu, Jingyu Zhang, Jiahan Xu, Guangyuan Miao, Long Feng, Zhanzhu Zhang and Huanxia Zhang

Nanotechnology has been able to bind to a wide range of functional textiles in recently. This paper aims to modify graphene oxide (GO) by grafting dimethyl phosphite and…

188

Abstract

Purpose

Nanotechnology has been able to bind to a wide range of functional textiles in recently. This paper aims to modify graphene oxide (GO) by grafting dimethyl phosphite and perfluorohexyl iodine. It was applied to cotton to obtain a flame-retardant, water-repellent and ultraviolet-resistant multifunctional fabric.

Design/methodology/approach

The GO-multi was synthesized by grafted dimethyl phosphite and perfluorohexyl chain and applied to cotton by the dipping-drying method. The surface chemistry of functionalized GO was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The thermal stability of the fabric was characterized by thermogravimetric analysis (TGA). The combustion properties were evaluated using a microscale combustion calorimeter, match test and TGA. Hydrophobicity of film and fabric surface was characterized by static contact angle, and the UV resistance of the fabric was represented by the ultroviolet procetion factor (UPF) value.

Findings

Dimethyl phosphite and perfluorohexyl chains were grafted on the surface of GO successively. In the match test, the GO-multi/cotton kept the original outline of the fabric. According to the micro-scale combustion calorimetry (MCC) data, the value of PHRR and THR of GO-multi/cotton was about 45 per cent lower than that of untreated cotton fabric. It was found from the field-emission scanning electron microscopy (SEM) pictures that the residue of GO-multi/ cotton burned by the match method was more compact and the graphene lamellar structure remained more complete. The hydrophobic effect of GO-multi/cotton was improved compared to untreated cotton, but not better than the fabric treated by the perfluorohexyl chain-grafted GO. The UPF value of GO-multi/cotton reached 253, which indicated that the anti-ultraviolet performance of GO-multi was greatly improved after it was deposited on the cotton fabric.

Research limitations/implications

Although the hydrophobic effect was much higher than that of untreated cotton fabric, its hydrophobic effect was not satisfied, which may be due to the fact that the content of F element content was low. So, it is still needed to explore the modifying method to increase the functional component amount on the GO nanosheet.

Practical implications

This modifying method can be used in any of multifunctional textile preparation process. The hydrophobic and flame-retardant cotton fabric revealed a sample for use in outdoor sports such as clothes and tents.

Originality/value

To meet the needs of multifunctional cotton fabrics, the modification of GO with dimethyl phosphite and perfluorohexyl iodine has not been reported. The modified fabric has flame-retardant, UV-resistant and hydrophobic properties.

Details

Pigment & Resin Technology, vol. 48 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 2 of 2
Per page
102050