Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 6 August 2019

Lin Li, Jiadong Xiao, Yanbiao Zou and Tie Zhang

The purpose of this paper is to propose a precise time-optimal path tracking approach for robots under kinematic and dynamic constraints to improve the work efficiency of robots…

218

Abstract

Purpose

The purpose of this paper is to propose a precise time-optimal path tracking approach for robots under kinematic and dynamic constraints to improve the work efficiency of robots and guarantee tracking accuracy.

Design/methodology/approach

In the proposed approach, the robot path is expressed by a scalar path coordinate and discretized into N points. The motion between two neighbouring points is assumed to be uniformly accelerated motion, so the time-optimal trajectory that satisfies constraints is obtained by using equations of uniformly accelerated motion instead of numerical integration. To improve dynamic model accuracy, the Coulomb and viscous friction are taken into account (while most publications neglect these effects). Furthermore, an iterative learning algorithm is designed to correct model-plant mismatch by adding an iterative compensation item into the dynamic model at each discrete point before trajectory planning.

Findings

An experiment shows that compared with the sequential convex log barrier method, the proposed numerical integration-like (NI-like) approach has less computation time and a smoother planning trajectory. Compared with the experimental results before iteration, the torque deviation, tracking error and trajectory execution time are reduced after 10 iterations.

Originality/value

As the proposed approach not only yields a time-optimal solution but also improves tracking performance, this approach can be used for any repetitive robot tasks that require more rapidity and less tracking error, such as assembly.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 20 July 2023

Haitao Wu, Wenyan Zhong, Botao Zhong, Heng Li, Jiadong Guo and Imran Mehmood

Blockchain has the potential to facilitate a paradigm shift in the construction industry toward effectiveness, transparency and collaboration. However, there is currently a…

1052

Abstract

Purpose

Blockchain has the potential to facilitate a paradigm shift in the construction industry toward effectiveness, transparency and collaboration. However, there is currently a paucity of empirical evidence from real-world construction projects. This study aims to systematically review blockchain adoption barriers, investigate critical ones and propose corresponding solutions.

Design/methodology/approach

An integrated method was adopted in this research based on the technology–organization–environment (TOE) theory and fuzzy decision-making trial and evaluation laboratory (DEMATEL) approach. Blockchain adoption barriers were first presented using the TOE framework. Then, key barriers were identified based on the importance and causality analysis in the fuzzy DEMATEL. Several suggestions were proposed to facilitate blockchain diffusion from the standpoints of the government, the industry and construction organizations.

Findings

The results highlighted seven key barriers. Specifically, the construction industry is more concerned with environmental barriers, such as policy uncertainties (E2) and technology maturity (E3), while most technical barriers are causal factors, such as “interoperability (T4)” and “smart contracts' security (T2)”.

Practical implications

This study contributes to a better understanding of the problem associated with blockchain implementation and provides policymakers with recommendations.

Originality/value

Identified TOE barriers lay the groundwork for theoretical observations to comprehend the blockchain adoption problem. This research also applied the fuzzy method to blockchain adoption barrier analysis, which can reduce the uncertainty and subjectivity in expert evaluations with a small sample.

Details

Engineering, Construction and Architectural Management, vol. 32 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 2 of 2
Per page
102050