Jia-Bao Liu, Morteza Bayati, Mazhar Abbas, Alireza Rahimi and Mohammad Naderi
The lattice Boltzmann method is used to simulate the nanofluid flow and heat transfer inside a finned multi-pipe heat exchanger.
Abstract
Purpose
The lattice Boltzmann method is used to simulate the nanofluid flow and heat transfer inside a finned multi-pipe heat exchanger.
Design/methodology/approach
The heat exchanger is filled with CuO-water nanofluid. The Koo–Kleinstreuer–Li (KKL) model is used to estimate the dynamic viscosity and considering the Brownian motion in the simulation. On the other hand, the influence of nanoparticles’ shapes on the heat transfer rate is considered, and the best efficient shape is selected to be used in the investigation.
Findings
The Rayleigh number, nanoparticle concentration and the thermal arrangements of internal active fins and bodies are the governing parameters. In addition, the impacts of these two parameters on the nanofluid flow, heat transfer rate, local and total entropy generation and heatline visualization are analyzed, comprehensively.
Originality/value
The originality of this work is using of lattice Boltzmann method for simulation of nanofluid flow and heat transfer during natural convection in a heat exchanger. Furthermore, influence of the shape of nanoparticles on the thermo-physical properties of nanofluid is analyzed using Koo–Kleinstreuer–Li correlation.