Search results

1 – 10 of 47
Content available
Article
Publication date: 18 January 2021

Ji-Huan He

It is extremely difficult to establish a variational principle for plasma. Kalaawy obtained a variational principle by using the semi-inverse method in 2016, and Li and He

963

Abstract

Purpose

It is extremely difficult to establish a variational principle for plasma. Kalaawy obtained a variational principle by using the semi-inverse method in 2016, and Li and He suggested a modification in 2017. This paper aims to search for a generalized variational formulation with a free parameter.

Design/methodology/approach

The semi-inverse method is used by suitable construction of a trial functional with some free parameters.

Findings

A modification of Li-He’s variational principle with a free parameter is obtained.

Originality/value

This paper suggests a new approach to construction of a trial-functional with some free parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 March 2020

Ji-Huan He

This paper aims to review some effective methods for fully fourth-order nonlinear integral boundary value problems with fractal derivatives.

Abstract

Purpose

This paper aims to review some effective methods for fully fourth-order nonlinear integral boundary value problems with fractal derivatives.

Design/methodology/approach

Boundary value problems arise everywhere in engineering, hence two-scale thermodynamics and fractal calculus have been introduced. Some analytical methods are reviewed, mainly including the variational iteration method, the Ritz method, the homotopy perturbation method, the variational principle and the Taylor series method. An example is given to show the simple solution process and the high accuracy of the solution.

Findings

An elemental and heuristic explanation of fractal calculus is given, and the main solution process and merits of each reviewed method are elucidated. The fractal boundary value problem in a fractal space can be approximately converted into a classical one by the two-scale transform.

Originality/value

This paper can be served as a paradigm for various practical applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 February 2020

Ji-Huan He and Habibolla Latifizadeh

The purpose of this paper is to suggest a general numerical algorithm for nonlinear problems by the variational iteration method (VIM).

Abstract

Purpose

The purpose of this paper is to suggest a general numerical algorithm for nonlinear problems by the variational iteration method (VIM).

Design/methodology/approach

Firstly, the Laplace transform technique is used to reconstruct the variational iteration algorithm-II. Secondly, its convergence is strictly proved. Thirdly, the numerical steps for the algorithm is given. Finally, some examples are given to show the solution process and the effectiveness of the method.

Findings

No variational theory is needed to construct the numerical algorithm, and the incorporation of the Laplace method into the VIM makes the solution process much simpler.

Originality/value

A universal iteration formulation is suggested for nonlinear problems. The VIM cleans up the numerical road to differential equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2019

Ji-Huan He

A three-dimensional (3D) unsteady potential flow might admit a variational principle. The purpose of this paper is to adopt a semi-inverse method to search for the variational…

Abstract

Purpose

A three-dimensional (3D) unsteady potential flow might admit a variational principle. The purpose of this paper is to adopt a semi-inverse method to search for the variational formulation from the governing equations.

Design/methodology/approach

A suitable trial functional with a possible unknown function is constructed, and the identification of the unknown function is given in detail. The Lagrange multiplier method is used to establish a generalized variational principle, but in vain.

Findings

Some new variational principles are obtained, and the semi-inverse method can easily overcome the Lagrange crisis.

Practical implications

The semi-inverse method sheds a promising light on variational theory, and it can replace the Lagrange multiplier method for the establishment of a generalized variational principle. It can be used for the establishment of a variational principle for fractal and fractional calculus.

Originality/value

This paper establishes some new variational principles for the 3D unsteady flow and suggests an effective method to eliminate the Lagrange crisis.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 October 2019

Xuejuan Li and Ji-Huan He

The purpose of this paper is to develop an effective numerical algorithm for a gas-melt two-phase flow and use it to simulate a polymer melt filling process. Moreover, the…

Abstract

Purpose

The purpose of this paper is to develop an effective numerical algorithm for a gas-melt two-phase flow and use it to simulate a polymer melt filling process. Moreover, the suggested algorithm can deal with the moving interface and discontinuities of unknowns across the interface.

Design/methodology/approach

The algebraic sub-grid scales-variational multi-scale (ASGS-VMS) finite element method is used to solve the polymer melt filling process. Meanwhile, the time is discretized using the Crank–Nicolson-based split fractional step algorithm to reduce the computational time. The improved level set method is used to capture the melt front interface, and the related equations are discretized by the second-order Taylor–Galerkin scheme in space and the third-order total variation diminishing Runge–Kutta scheme in time.

Findings

The numerical method is validated by the benchmark problem. Moreover, the viscoelastic polymer melt filling process is investigated in a rectangular cavity. The front interface, pressure field and flow-induced stresses of polymer melt during the filling process are predicted. Overall, this paper presents a VMS method for polymer injection molding. The present numerical method is extremely suitable for two free surface problems.

Originality/value

For the first time ever, the ASGS-VMS finite element method is performed for the two-phase flow of polymer melt filling process, and an effective numerical method is designed to catch the moving surface.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 July 2014

Hong-Yan Liu, Ji-Huan He and Zheng-Biao Li

Academic and industrial researches on nanoscale flows and heat transfers are an area of increasing global interest, where fascinating phenomena are always observed, e.g. admirable…

Abstract

Purpose

Academic and industrial researches on nanoscale flows and heat transfers are an area of increasing global interest, where fascinating phenomena are always observed, e.g. admirable water or air permeation and remarkable thermal conductivity. The purpose of this paper is to reveal the phenomena by the fractional calculus.

Design/methodology/approach

This paper begins with the continuum assumption in conventional theories, and then the fractional Gauss’ divergence theorems are used to derive fractional differential equations in fractal media. Fractional derivatives are introduced heuristically by the variational iteration method, and fractal derivatives are explained geometrically. Some effective analytical approaches to fractional differential equations, e.g. the variational iteration method, the homotopy perturbation method and the fractional complex transform, are outlined and the main solution processes are given.

Findings

Heat conduction in silk cocoon and ground water flow are modeled by the local fractional calculus, the solutions can explain well experimental observations.

Originality/value

Particular attention is paid throughout the paper to giving an intuitive grasp for fractional calculus. Most cited references are within last five years, catching the most frontier of the research. Some ideas on this review paper are first appeared.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2021

Muhammad Nadeem and Ji-Huan He

The purpose of this paper is to find an approximate solution of a fractional differential equation. The fractional Newell–Whitehead–Segel equation (FNWSE) is used to elucidate the…

Abstract

Purpose

The purpose of this paper is to find an approximate solution of a fractional differential equation. The fractional Newell–Whitehead–Segel equation (FNWSE) is used to elucidate the solution process, which is one of the nonlinear amplitude equation, and it enhances a significant role in the modeling of various physical phenomena arising in fluid mechanics, solid-state physics, optics, plasma physics, dispersion and convection systems.

Design/methodology/approach

In Part 1, the authors adopted Mohand transform to find the analytical solution of FNWSE. In this part, the authors apply the fractional complex transform (the two-scale transform) to convert the problem into its differential partner, and then they introduce the homotopy perturbation method (HPM) to bring down the nonlinear terms for the approximate solution.

Findings

The HPM makes numerical simulation for the fractional differential equations easy, and the two-scale transform is a strong tool for fractal models.

Originality/value

The HPM with the two-scale transform sheds a bright light on numerical approach to fractional calculus.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 May 2020

Ji-Huan He, Fei-Yu Ji and Hamid Mohammad-Sedighi

The purpose of this paper is to demonstrate that the numerical method is not everything for nonlinear equations. Some properties cannot be revealed numerically; an example is used…

Abstract

Purpose

The purpose of this paper is to demonstrate that the numerical method is not everything for nonlinear equations. Some properties cannot be revealed numerically; an example is used to elucidate the fact.

Design/methodology/approach

A variational principle is established for the generalized KdV – Burgers equation by the semi-inverse method, and the equation is solved analytically by the exp-function method, and some exact solutions are obtained, including blowup solutions and discontinuous solutions. The solution morphologies are studied by illustrations using different scales.

Findings

Solitary solution is the basic property of nonlinear wave equations. This paper finds some new properties of the KdV–Burgers equation, which have not been reported in open literature and cannot be effectively elucidated by numerical methods. When the solitary solution or the blowup solution is observed on a much small scale, their discontinuous property is first found.

Originality/value

The variational principle can explain the blowup and discontinuous properties of a nonlinear wave equation, and the exp-function method is a good candidate to reveal the solution properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 May 2023

Ji-Huan He, T.S. Amer, W.S. Amer, H.F. Elkafly and A.A. Galal

The purpose of this paper is to study the dynamical properties of a rotating rigid body (RB) containing a viscous incompressible fluid.

Abstract

Purpose

The purpose of this paper is to study the dynamical properties of a rotating rigid body (RB) containing a viscous incompressible fluid.

Design/methodology/approach

The Reynolds number is assumed to be small so that the governing equations can be easily obtained, and the asymptotic technique is used to solve the problem.

Findings

The effects of the various body parameter values on the motion’s behavior are theoretically elucidated, which can be used for optimization of the charged RB.

Originality/value

This paper finds the missing piece of the puzzle when it comes to the rotating RB containing a viscous fluid; it clearly elucidates graphically how the body parameters affect its dynamical properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 February 2021

Muhammad Nadeem, Ji-Huan He and Asad Islam

This study aims that very lately, Mohand transform is introduced to solve the ordinary and partial differential equations (PDEs). In this paper, the authors modify this…

Abstract

Purpose

This study aims that very lately, Mohand transform is introduced to solve the ordinary and partial differential equations (PDEs). In this paper, the authors modify this transformation and associate it with a further analytical method called homotopy perturbation method (HPM) for the fractional view of Newell–Whitehead–Segel equation (NWSE). As Mohand transform is restricted to linear obstacles only, as a consequence, HPM is used to crack the nonlinear terms arising in the illustrated problems. The fractional derivatives are taken into the Caputo sense.

Design/methodology/approach

The specific objective of this study is to examine the problem which performs an efficient role in the form of stripe orders of two dimensional systems. The authors achieve the multiple behaviors and properties of fractional NWSE with different positive integers.

Findings

The main finding of this paper is to analyze the fractional view of NWSE. The obtain results perform very good in agreement with exact solution. The authors show that this strategy is absolutely very easy and smooth and have no assumption for the constriction of this approach.

Research limitations/implications

This paper invokes these two main inspirations: first, Mohand transform is associated with HPM, secondly, fractional view of NWSE with different positive integers.

Practical implications

In this paper, the graph of approximate solution has the excellent promise with the graphs of exact solutions.

Social implications

This paper presents valuable technique for handling the fractional PDEs without involving any restrictions or hypothesis.

Originality/value

The authors discuss the fractional view of NWSE by a Mohand transform. The work of the present paper is original and advanced. Significantly, to the best of the authors’ knowledge, no such work has yet been published in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 47